An elementary approach to local combinatorial formulae for the Euler class of a~PL spherical fibre bundle
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 429-443
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present an elementary approach to local combinatorial formulae for the Euler class of a fibre-oriented triangulated spherical fibre bundle. This approach is based on sections averaging technique and very basic knowledge of simplicial (co)homology theory. Our formulae are close relatives of those due to Mnëv. 
Bibliography: 9 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
section of a fibre bundle, characteristic class.
Mots-clés : harmonic chain, triangulation
                    
                  
                
                
                Mots-clés : harmonic chain, triangulation
@article{SM_2023_214_3_a7,
     author = {G. Yu. Panina},
     title = {An elementary approach to local combinatorial formulae for the {Euler} class of {a~PL} spherical fibre bundle},
     journal = {Sbornik. Mathematics},
     pages = {429--443},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/}
}
                      
                      
                    TY - JOUR AU - G. Yu. Panina TI - An elementary approach to local combinatorial formulae for the Euler class of a~PL spherical fibre bundle JO - Sbornik. Mathematics PY - 2023 SP - 429 EP - 443 VL - 214 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/ LA - en ID - SM_2023_214_3_a7 ER -
G. Yu. Panina. An elementary approach to local combinatorial formulae for the Euler class of a~PL spherical fibre bundle. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 429-443. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/
