An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 429-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an elementary approach to local combinatorial formulae for the Euler class of a fibre-oriented triangulated spherical fibre bundle. This approach is based on sections averaging technique and very basic knowledge of simplicial (co)homology theory. Our formulae are close relatives of those due to Mnëv. Bibliography: 9 titles.
Keywords: section of a fibre bundle, characteristic class.
Mots-clés : harmonic chain, triangulation
@article{SM_2023_214_3_a7,
     author = {G. Yu. Panina},
     title = {An elementary approach to local combinatorial formulae for the {Euler} class of {a~PL} spherical fibre bundle},
     journal = {Sbornik. Mathematics},
     pages = {429--443},
     year = {2023},
     volume = {214},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/}
}
TY  - JOUR
AU  - G. Yu. Panina
TI  - An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 429
EP  - 443
VL  - 214
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/
LA  - en
ID  - SM_2023_214_3_a7
ER  - 
%0 Journal Article
%A G. Yu. Panina
%T An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle
%J Sbornik. Mathematics
%D 2023
%P 429-443
%V 214
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/
%G en
%F SM_2023_214_3_a7
G. Yu. Panina. An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 429-443. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/

[1] N. Mnev and G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Semin. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 448, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2016, 201–235 ; J. Math. Sci. (N.Y.), 224:2 (2017), 304–327 | MR | Zbl | DOI

[2] K. Igusa, “Combinatorial Miller-Morita-Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR | Zbl

[3] N. E. Mnëv, “A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Zap. Nauchn. Semin. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 507, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2021, 35–58 ; J. Math. Sci. (N.Y.), 261:5 (2022), 614–629 | MR | Zbl | DOI

[4] M. È. Kazarian, “The Chern-Euler number of circle bundle via singularity theory”, Math. Scand., 82:2 (1998), 207–236 | DOI | MR | Zbl

[5] G. Gangopadhyay, Counting triangles formula for the first Chern class of a circle bundle, arXiv: 1712.03024v2

[6] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1974, vii+331 pp. | DOI | MR | Zbl

[7] D. B. Fuchs, A. T. Fomenko and V. L. Gutenmaher, Homotopical topology, Moscow University Publishing House, Moscow, 1969, 459 pp. ; English transl., A. Fomenko and D. Fuchs, Homotopical topology, Grad. Texts in Math., 273, 2nd ed., Springer, Cham, 2016, xi+627 pp. | Zbl | DOI | MR | Zbl

[8] B. Eckman, “Harmonische Funktionen und Randwertaufgaben in einem Komplex”, Comment. Math. Helv., 17 (1945), 240–255 | DOI | MR | Zbl

[9] D. Gorodkov, Combinatorial computation of first Pontryagin class and its applications, PhD thesis, Steklov Mathematical Institute, Moscow, 2021, 88 pp. (Russian) https://www.dissercat.com/content/kombinatornoe-vychislenie-pervogo-klassa-pontryagina-i-prilozheniya