Mots-clés : harmonic chain, triangulation
@article{SM_2023_214_3_a7,
author = {G. Yu. Panina},
title = {An elementary approach to local combinatorial formulae for the {Euler} class of {a~PL} spherical fibre bundle},
journal = {Sbornik. Mathematics},
pages = {429--443},
year = {2023},
volume = {214},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/}
}
G. Yu. Panina. An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 429-443. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a7/
[1] N. Mnev and G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Semin. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 448, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2016, 201–235 ; J. Math. Sci. (N.Y.), 224:2 (2017), 304–327 | MR | Zbl | DOI
[2] K. Igusa, “Combinatorial Miller-Morita-Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR | Zbl
[3] N. E. Mnëv, “A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Zap. Nauchn. Semin. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 507, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2021, 35–58 ; J. Math. Sci. (N.Y.), 261:5 (2022), 614–629 | MR | Zbl | DOI
[4] M. È. Kazarian, “The Chern-Euler number of circle bundle via singularity theory”, Math. Scand., 82:2 (1998), 207–236 | DOI | MR | Zbl
[5] G. Gangopadhyay, Counting triangles formula for the first Chern class of a circle bundle, arXiv: 1712.03024v2
[6] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1974, vii+331 pp. | DOI | MR | Zbl
[7] D. B. Fuchs, A. T. Fomenko and V. L. Gutenmaher, Homotopical topology, Moscow University Publishing House, Moscow, 1969, 459 pp. ; English transl., A. Fomenko and D. Fuchs, Homotopical topology, Grad. Texts in Math., 273, 2nd ed., Springer, Cham, 2016, xi+627 pp. | Zbl | DOI | MR | Zbl
[8] B. Eckman, “Harmonische Funktionen und Randwertaufgaben in einem Komplex”, Comment. Math. Helv., 17 (1945), 240–255 | DOI | MR | Zbl
[9] D. Gorodkov, Combinatorial computation of first Pontryagin class and its applications, PhD thesis, Steklov Mathematical Institute, Moscow, 2021, 88 pp. (Russian) https://www.dissercat.com/content/kombinatornoe-vychislenie-pervogo-klassa-pontryagina-i-prilozheniya