Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 411-428

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bernstein-Szegő inequality for the Weyl derivative of real order $\alpha\geqslant 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\alpha$ (the classical value) in all $L_p$-spaces, $0\leqslant p\leqslant\infty$. The set of all such $\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\in\mathbb N$. Bibliography: 22 titles.
Keywords: trigonometric polynomial, Riesz derivative, Bernstein-Szegő inequality, space $L_0$.
@article{SM_2023_214_3_a6,
     author = {A. O. Leont'eva},
     title = {Bernstein-Szeg\H o inequality for the {Riesz} derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant},
     journal = {Sbornik. Mathematics},
     pages = {411--428},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/}
}
TY  - JOUR
AU  - A. O. Leont'eva
TI  - Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 411
EP  - 428
VL  - 214
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/
LA  - en
ID  - SM_2023_214_3_a6
ER  - 
%0 Journal Article
%A A. O. Leont'eva
%T Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
%J Sbornik. Mathematics
%D 2023
%P 411-428
%V 214
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/
%G en
%F SM_2023_214_3_a6
A. O. Leont'eva. Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 411-428. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/