Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 411-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bernstein-Szegő inequality for the Weyl derivative of real order $\alpha\geqslant 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\alpha$ (the classical value) in all $L_p$-spaces, $0\leqslant p\leqslant\infty$. The set of all such $\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\in\mathbb N$. Bibliography: 22 titles.
Keywords: trigonometric polynomial, Riesz derivative, Bernstein-Szegő inequality, space $L_0$.
@article{SM_2023_214_3_a6,
     author = {A. O. Leont'eva},
     title = {Bernstein-Szeg\H{o} inequality for the {Riesz} derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant},
     journal = {Sbornik. Mathematics},
     pages = {411--428},
     year = {2023},
     volume = {214},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/}
}
TY  - JOUR
AU  - A. O. Leont'eva
TI  - Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 411
EP  - 428
VL  - 214
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/
LA  - en
ID  - SM_2023_214_3_a6
ER  - 
%0 Journal Article
%A A. O. Leont'eva
%T Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
%J Sbornik. Mathematics
%D 2023
%P 411-428
%V 214
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/
%G en
%F SM_2023_214_3_a6
A. O. Leont'eva. Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 411-428. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/

[1] H. Weyl, “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljschr. Naturforsch. Ges. Zürich, 62 (1917), 296–302 | MR | Zbl

[2] V. V. Arestov, “The Szegö inequality for derivatives of a conjugate trigonometric polynomial in $L_0$”, Mat. Zametki, 56:6 (1994), 10–26 ; English transl. in Math. Notes, 56:6 (1994), 1216–1227 | MR | Zbl | DOI

[3] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | Zbl

[4] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. ; English transl., Gordon and Breach Science Publishers, Yverdon, 1993, xxxvi+976 pp. | MR | Zbl | MR | Zbl

[5] V. V. Arestov, “Integral inequalities for algebraic polynomials on the unit circle”, Mat. Zametki, 48:4 (1990), 7–18 ; English transl. in Math. Notes, 48:4 (1990), 977–984 | MR | Zbl | DOI

[6] V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives”, Izv. Akad. Nauk SSSR Ser. Mat., 45:1 (1981), 3–22 ; English transl. in Math. USSR-Izv., 18:1 (1982), 1–17 | MR | Zbl | DOI

[7] V. V. Arestov, “Sharp inequalities for trigonometric polynomials with respect to integral functionals”, Tr. Inst. Mat. Mekh., 16:4 (2010), 38–53 ; English transl. in Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S21–S36 | Zbl | DOI | MR

[8] V. V. Arestov and P. Yu. Glazyrina, “Integral inequalities for algebraic and trigonometric polynomials”, Dokl. Ross. Akad. Nauk, 442:6 (2012), 727–731 ; English transl. in Dokl. Math., 85:1 (2012), 104–108 | MR | Zbl | DOI

[9] V. V. Arestov and P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[10] V. V. Arestov and P. Yu. Glazyrina, “Bernstein-Szegö inequality for fractional derivatives of trigonometric polynomials”, Tr. Inst. Mat. Mekh., 20:1 (2014), 17–31 ; English transl. in Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 13–28 | MR | Zbl | DOI

[11] T. Erdèlyi, “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323, 9 pp. | DOI | MR | Zbl

[12] A. O. Leont'eva, “Bernstein-Szegő inequality for trigonometric polynomials in $L_p$, $0\le p \le\infty$, with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713, 11 pp. | DOI | MR | Zbl

[13] N. P. Korneichuk, V. F. Babenko and A. A. Ligun, Extremal properties of polynomials and splines, Naukova Dumka, Kiev, 1992, 304 pp. (Russian) | MR | Zbl

[14] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov and S. A. Pichugov, Inequalities for derivatives and their applications, Naukova Dumka, Kiev, 2003, 590 pp. (Russian)

[15] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994, xiv+821 pp. | DOI | MR | Zbl

[16] A. I. Kozko, “The exact constants in the Bernstein-Zygmund-Szegö inequalities with fractional derivatives and the Jackson-Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl

[17] V. V. Arestov, “On inequalities of S. N. Bernstein for algebraic and trigonometric polynomials”, Dokl. Akad. Nauk SSSR, 246:6 (1979), 1289–1292 ; English transl. in Soviet Math. Dokl., 20 (1979), 600–603 | MR | Zbl

[18] N. V. Popov, “An integral inequality for trigonometric polynomials”, Contemporary methods in function theory and related problems, Voronezh Winter Mathematical School (28 January – 2 February 2021), Publishing house of Voronezh State University, Voronezh, 2021, 243–245 (Russian)

[19] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. 1, 2, Grundlehren Math. Wiss., 19, 20, 3. bericht. Aufl., Springer-Verlag, Berlin–New York, 1964, xvi+338 pp., x+407 pp. | MR | MR | Zbl

[20] M. Marden, The geometry of the zeros of a polynomial in a complex variable, Math. Surveys, 3, Amer. Math. Soc., New York, 1949, ix+183 pp. | MR | Zbl

[21] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Fizmatgiz, Moscow, 1961, 310 pp. ; English transl., Hafner Publishing Co., New York; Oliver Boyd, Edinburgh–London, 1965, x+253 pp. | MR | Zbl | MR | Zbl

[22] P. L. Butzer and S. Jansche, “A direct approach to the Mellin transform”, J. Fourier Anal. Appl., 3:4 (1997), 325–376 | DOI | MR | Zbl