Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 411-428
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Bernstein-Szegő inequality for the Weyl derivative of real order $\alpha\geqslant 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\alpha$ (the classical value) in all $L_p$-spaces, $0\leqslant p\leqslant\infty$. The set of all such $\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\in\mathbb N$. 
Bibliography: 22 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
trigonometric polynomial, Riesz derivative, Bernstein-Szegő inequality, space $L_0$.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_3_a6,
     author = {A. O. Leont'eva},
     title = {Bernstein-Szeg\H o inequality for the {Riesz} derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant},
     journal = {Sbornik. Mathematics},
     pages = {411--428},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/}
}
                      
                      
                    TY - JOUR AU - A. O. Leont'eva TI - Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant JO - Sbornik. Mathematics PY - 2023 SP - 411 EP - 428 VL - 214 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/ LA - en ID - SM_2023_214_3_a6 ER -
%0 Journal Article %A A. O. Leont'eva %T Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant %J Sbornik. Mathematics %D 2023 %P 411-428 %V 214 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/ %G en %F SM_2023_214_3_a6
A. O. Leont'eva. Bernstein-Szeg\H o inequality for the Riesz derivative of~trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 411-428. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a6/
