On a~class of interpolation inequalities on the 2D sphere
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 396-410

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove estimates for the $L^p$-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space $H^1$ on the 2D sphere. As a corollary, order sharp constants for the embedding $H^1\hookrightarrow L^q$, $q\infty$, are obtained in the Gagliardo-Nirenberg interpolation inequalities. Bibliography: 25 titles.
Keywords: Gagliardo-Nirenberg inequalities, sphere, orthonormal systems.
@article{SM_2023_214_3_a5,
     author = {S. V. Zelik and A. A. Ilyin},
     title = {On a~class of interpolation inequalities on the {2D} sphere},
     journal = {Sbornik. Mathematics},
     pages = {396--410},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/}
}
TY  - JOUR
AU  - S. V. Zelik
AU  - A. A. Ilyin
TI  - On a~class of interpolation inequalities on the 2D sphere
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 396
EP  - 410
VL  - 214
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/
LA  - en
ID  - SM_2023_214_3_a5
ER  - 
%0 Journal Article
%A S. V. Zelik
%A A. A. Ilyin
%T On a~class of interpolation inequalities on the 2D sphere
%J Sbornik. Mathematics
%D 2023
%P 396-410
%V 214
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/
%G en
%F SM_2023_214_3_a5
S. V. Zelik; A. A. Ilyin. On a~class of interpolation inequalities on the 2D sphere. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 396-410. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/