On a~class of interpolation inequalities on the 2D sphere
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 396-410
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove estimates for the $L^p$-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space $H^1$ on the 2D sphere. As a corollary, order sharp constants for the embedding $H^1\hookrightarrow L^q$, $q\infty$, are obtained in the Gagliardo-Nirenberg interpolation inequalities.
Bibliography: 25 titles.
Keywords:
Gagliardo-Nirenberg inequalities, sphere, orthonormal systems.
@article{SM_2023_214_3_a5,
author = {S. V. Zelik and A. A. Ilyin},
title = {On a~class of interpolation inequalities on the {2D} sphere},
journal = {Sbornik. Mathematics},
pages = {396--410},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/}
}
S. V. Zelik; A. A. Ilyin. On a~class of interpolation inequalities on the 2D sphere. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 396-410. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/