On a class of interpolation inequalities on the 2D sphere
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 396-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove estimates for the $L^p$-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space $H^1$ on the 2D sphere. As a corollary, order sharp constants for the embedding $H^1\hookrightarrow L^q$, $q<\infty$, are obtained in the Gagliardo-Nirenberg interpolation inequalities. Bibliography: 25 titles.
Keywords: Gagliardo-Nirenberg inequalities, sphere, orthonormal systems.
@article{SM_2023_214_3_a5,
     author = {S. V. Zelik and A. A. Ilyin},
     title = {On a~class of interpolation inequalities on the {2D} sphere},
     journal = {Sbornik. Mathematics},
     pages = {396--410},
     year = {2023},
     volume = {214},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/}
}
TY  - JOUR
AU  - S. V. Zelik
AU  - A. A. Ilyin
TI  - On a class of interpolation inequalities on the 2D sphere
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 396
EP  - 410
VL  - 214
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/
LA  - en
ID  - SM_2023_214_3_a5
ER  - 
%0 Journal Article
%A S. V. Zelik
%A A. A. Ilyin
%T On a class of interpolation inequalities on the 2D sphere
%J Sbornik. Mathematics
%D 2023
%P 396-410
%V 214
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/
%G en
%F SM_2023_214_3_a5
S. V. Zelik; A. A. Ilyin. On a class of interpolation inequalities on the 2D sphere. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 396-410. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a5/

[1] W. Beckner, “Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality”, Ann. of Math. (2), 138:1 (1993), 213–242 | DOI | MR | Zbl

[2] M. F. Bidaut-Veron and L. Veron, “Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations”, Invent. Math., 106:3 (1991), 489–539 | DOI | MR | Zbl

[3] J. Dolbeault, M. J. Esteban, M. Kowalczyk and M. Loss, “Sharp interpolation inequalities on the sphere: new methods and consequences”, Chinese Ann. Math. Ser. B, 34:1 (2013), 99–112 | DOI | MR | Zbl

[4] E. H. Lieb, “An $L^p$ bound for the Riesz and Bessel potentials of orthonormal functions”, J. Funct. Anal., 51:2 (1983), 159–165 | DOI | MR | Zbl

[5] A. A. Ilyin and S. Zelik, “Sharp dimension estimates of the attractor of the damped 2D Euler-Bardina equations”, Partial differential equations, spectral theory, and mathematical physics, EMS Ser. Congr. Rep., EMS Press, Berlin, 2021, 209–229 | DOI | MR | Zbl

[6] A. Ilyin, A. Kostianko and S. Zelik, “Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations”, Phys. D, 432 (2022), 133156, 13 pp. | DOI | MR | Zbl

[7] S. V. Zelik, A. A. Ilyin and A. G. Kostyanko (Kostianko), “Estimates for the dimension of attractors of a regularized Euler system with dissipation on the sphere”, Mat. Zametki, 111:1 (2022), 54–66 ; English transl. in Math. Notes, 111:1 (2022), 47–57 | DOI | MR | Zbl | DOI

[8] A. Ilyin, A. Kostianko and S. Zelik, “Applications of the Lieb-Thirring and other bounds for orthonormal systems in mathematical hydrodynamics”, The physics and mathematics of Elliott Lieb. The 90th anniversary, v. I, EMS Press, Berlin, 2022, 583–608 | DOI | Zbl

[9] K. I. Babenko, “An inequality in the theory of Fourier integrals”, Izv. Akad. Nak SSSR Ser. Mat., 25:4 (1961), 531–542 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 44, Amer. Math. Soc., Providence, RI, 1965, 115–128 | MR | Zbl | DOI

[10] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102 (1975), 159–182 | DOI | MR | Zbl

[11] Sh. M. Nasibov, “On optimal constants in some Sobolev inequalities and their application to a nonlinear Schrödinger equation”, Dokl. Akad. Nauk SSSR, 307:3 (1989), 538–542 ; English transl. in Soviet Math. Dokl., 40:1 (1990), 110–115 | MR | Zbl

[12] E. H. Lieb and M. P. Loss, Analysis, Grad. Stud. Math., 14, 2nd ed., Amer. Math. Soc., Providence, RI, 2001, xxii+346 pp. | DOI | MR | Zbl

[13] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys., 87:4 (1983), 567–576 | DOI | MR | Zbl

[14] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl. (4), 110 (1976), 353–372 | DOI | MR | Zbl

[15] E. H. Lieb, “Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities”, Ann. of Math. (2), 118:2 (1983), 349–374 | DOI | MR | Zbl

[16] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl

[17] H. Araki, “On an inequality of Lieb and Thirring”, Lett. Math. Phys., 19:2 (1990), 167–170 | DOI | MR | Zbl

[18] E. Lieb and W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics. Essays in honor of Valentine Bargmann, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1976, 269–303 | Zbl

[19] B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp. | DOI | MR | Zbl

[20] A. Ilyin, A. Laptev and S. Zelik, “Lieb-Thirring constant on the sphere and on the torus”, J. Funct. Anal., 279:12 (2020), 108784, 18 pp. | DOI | MR | Zbl

[21] J. A. Hempel, G. R. Morris and N. S. Trudinger, “On the sharpness of a limiting case of the Sobolev imbedding theorem”, Bull. Austral. Math. Soc., 3:3 (1970), 369–373 | DOI | MR | Zbl

[22] A. A. Ilyin, “Lieb-Thirring inequalities on the $N$-sphere and in the plane, and some applications”, Proc. London Math. Soc. (3), 67:1 (1993), 159–182 | DOI | MR | Zbl

[23] A. A. Ilyin, “Partly dissipative semigroups generated by the Navier-Stokes system on two-dimensional manifolds, and their attractors”, Mat. Sb., 184:1 (1993), 55–88 ; English transl in Russian Acad. Sci. Sb. Math., 78:1 (1994), 47–76 | MR | Zbl | DOI

[24] V. I. Krylov, Approximate calculation of integrals, Fizmatgiz, Moscow, 1959, 327 pp. ; English transl., The Macmillan Co., New York–London, 1962, x+357 pp. | MR | Zbl | MR | Zbl

[25] S. V. Zelik and A. A. Ilyin, “Green's function asymptotics and sharp interpolation inequalities”, Uspekhi Mat. Nauk, 69:2(416) (2014), 23–76 ; English transl. in Russian Math. Surveys, 69:2 (2014), 209–260 | DOI | MR | Zbl | DOI