Degeneration of a graph describing conformal structure
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 383-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the cell decomposition of the moduli space of real genus $2$ curves with marked point on the unique real oval. The cells are enumerated by certain graphs, whose weights describe the complex structure on the curve. We show that the collapse of an edge in a graph results in a root-like singularity of the natural map from the weights on graphs to the moduli space of curves. Bibliography: 24 titles.
Keywords: real algebraic curve, abelian integral, graphs, foliation associated with a quadratic differential.
Mots-clés : moduli space
@article{SM_2023_214_3_a4,
     author = {A. B. Bogatyrev},
     title = {Degeneration of a~graph describing conformal structure},
     journal = {Sbornik. Mathematics},
     pages = {383--395},
     year = {2023},
     volume = {214},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a4/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Degeneration of a graph describing conformal structure
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 383
EP  - 395
VL  - 214
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a4/
LA  - en
ID  - SM_2023_214_3_a4
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Degeneration of a graph describing conformal structure
%J Sbornik. Mathematics
%D 2023
%P 383-395
%V 214
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a4/
%G en
%F SM_2023_214_3_a4
A. B. Bogatyrev. Degeneration of a graph describing conformal structure. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a4/

[1] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl

[2] V. V. Fock, Description of moduli space of projective structures via fat graphs, arXiv: hep-th/9312193

[3] F. Klein, “Ueber die Erniedrigung der Modulargleichungen”, Math. Ann., 14:3 (1878), 417–427 | DOI | MR | Zbl

[4] F. Klein, “Ueber die Transformation elfter Ordnung der elliptischen Funktionen”, Math. Ann., 15:3–4 (1879), 533–555 | DOI | Zbl

[5] A. Grothendieck, “Esquisse d'un programme”, Geometric Galois actions, v. 1, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997, 5–48 | DOI | MR | Zbl

[6] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, Low-Dimensional Topology, II, Springer-Verlag, Berlin, 2004, xvi+455 pp. | DOI | MR | Zbl

[7] M. Bertola, “Boutroux curves with external field: equilibrium measures without a variational problem”, Anal. Math. Phys., 1:2–3 (2011), 167–211 | DOI | MR | Zbl

[8] J. L. Harer, “The cohomology of the moduli space of curves”, Theory of moduli (Montecatini Terme 1985), Lecture Notes in Math., 1337, Springer, Berlin, 1988, 138–221 | DOI | MR | Zbl

[9] M. L. Kontsevich, “Intersection theory on the moduli space of curves”, Funktsional. Anal. i Prilozhen., 25:2 (1991), 50–57 ; English transl. in Funct. Anal. Appl., 25:2 (1991), 123–129 | MR | Zbl | DOI

[10] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[11] R. C. Penner, “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–339 | DOI | MR | Zbl

[12] M. Mulase and M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb Q}$”, Asian J. Math., 2:4 (1998), 875–919 | DOI | MR | Zbl

[13] A. B. Bogatyrev, “Effective approach to least deviation problems”, Mat. Sb., 193:12 (2002), 21–40 ; English transl. in Sb. Math., 193:12 (2002), 1749–1769 | DOI | MR | Zbl | DOI

[14] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Moscow Center for Continuous Mathematical Education, Moscow, 2005, 173 pp. ; English transl., Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | MR | Zbl | DOI | MR | Zbl

[15] A. B. Bogatyrev, “Combinatorial description of a moduli space of curves and of extremal polynomials”, Mat. Sb., 194:10 (2003), 27–48 ; English transl. in Sb. Math., 194:10 (2003), 1451–1473 ; “Errata”, 194:12 (2003), 1899 | DOI | MR | Zbl | DOI | DOI

[16] A. B. Bogatyrev, “Combinatorial analysis of the period mapping: the topology of 2D fibres”, Mat. Sb., 210:11 (2019), 24–57 ; English transl. in Sb. Math., 210:11 (2019), 1531–1562 | DOI | MR | Zbl | DOI

[17] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, 437–583 ; arXiv: math/0609392 | MR | Zbl

[18] V. A. Voevodskii (Voevodsky) and G. B. Shabat, “Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields”, Dokl. Akad. Nauk SSSR, 304:2 (1989), 265–268 ; English transl. in Soviet Math. Dokl., 39:1 (1989), 38–41 | MR | Zbl

[19] A. B. Bogatyrev and Q. Gendron, “The number of components of the Pell-Abel equations with primitive solution of given degree”, Uspekhi Mat. Nauk, 78:1(469) (2023), 209–210 ; English transl. in Russian Math. Surveys, 78:1 (2023), 208–210 | DOI | DOI

[20] I. Krichever, S. Lando and A. Skripchenko, “Real-normalized differentials with a single order 2 pole”, Lett. Math. Phys., 111:2 (2021), 36, 19 pp. ; arXiv: 2010.09358 | DOI | MR | Zbl

[21] A. Yu. Solynin, “Quadratic differentials and weighted graphs on compact surfaces”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 473–505 | DOI | MR | Zbl

[22] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Math. Stud., 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | Zbl

[23] A. Bogatyrev, “Effective computation of optimal stability polynomials”, Calcolo, 41:4 (2004), 247–256 | DOI | MR | Zbl

[24] A. B. Bogatyrev, “Effective solution of the problem of the optimal stability polynomial”, Mat. Sb., 196:7 (2005), 27–50 ; English transl. in Sb. Math., 196:7 (2005), 959–981 | DOI | MR | Zbl | DOI