Mots-clés : moduli space
@article{SM_2023_214_3_a4,
author = {A. B. Bogatyrev},
title = {Degeneration of a~graph describing conformal structure},
journal = {Sbornik. Mathematics},
pages = {383--395},
year = {2023},
volume = {214},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a4/}
}
A. B. Bogatyrev. Degeneration of a graph describing conformal structure. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a4/
[1] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl
[2] V. V. Fock, Description of moduli space of projective structures via fat graphs, arXiv: hep-th/9312193
[3] F. Klein, “Ueber die Erniedrigung der Modulargleichungen”, Math. Ann., 14:3 (1878), 417–427 | DOI | MR | Zbl
[4] F. Klein, “Ueber die Transformation elfter Ordnung der elliptischen Funktionen”, Math. Ann., 15:3–4 (1879), 533–555 | DOI | Zbl
[5] A. Grothendieck, “Esquisse d'un programme”, Geometric Galois actions, v. 1, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997, 5–48 | DOI | MR | Zbl
[6] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, Low-Dimensional Topology, II, Springer-Verlag, Berlin, 2004, xvi+455 pp. | DOI | MR | Zbl
[7] M. Bertola, “Boutroux curves with external field: equilibrium measures without a variational problem”, Anal. Math. Phys., 1:2–3 (2011), 167–211 | DOI | MR | Zbl
[8] J. L. Harer, “The cohomology of the moduli space of curves”, Theory of moduli (Montecatini Terme 1985), Lecture Notes in Math., 1337, Springer, Berlin, 1988, 138–221 | DOI | MR | Zbl
[9] M. L. Kontsevich, “Intersection theory on the moduli space of curves”, Funktsional. Anal. i Prilozhen., 25:2 (1991), 50–57 ; English transl. in Funct. Anal. Appl., 25:2 (1991), 123–129 | MR | Zbl | DOI
[10] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl
[11] R. C. Penner, “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–339 | DOI | MR | Zbl
[12] M. Mulase and M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb Q}$”, Asian J. Math., 2:4 (1998), 875–919 | DOI | MR | Zbl
[13] A. B. Bogatyrev, “Effective approach to least deviation problems”, Mat. Sb., 193:12 (2002), 21–40 ; English transl. in Sb. Math., 193:12 (2002), 1749–1769 | DOI | MR | Zbl | DOI
[14] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Moscow Center for Continuous Mathematical Education, Moscow, 2005, 173 pp. ; English transl., Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | MR | Zbl | DOI | MR | Zbl
[15] A. B. Bogatyrev, “Combinatorial description of a moduli space of curves and of extremal polynomials”, Mat. Sb., 194:10 (2003), 27–48 ; English transl. in Sb. Math., 194:10 (2003), 1451–1473 ; “Errata”, 194:12 (2003), 1899 | DOI | MR | Zbl | DOI | DOI
[16] A. B. Bogatyrev, “Combinatorial analysis of the period mapping: the topology of 2D fibres”, Mat. Sb., 210:11 (2019), 24–57 ; English transl. in Sb. Math., 210:11 (2019), 1531–1562 | DOI | MR | Zbl | DOI
[17] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, 437–583 ; arXiv: math/0609392 | MR | Zbl
[18] V. A. Voevodskii (Voevodsky) and G. B. Shabat, “Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields”, Dokl. Akad. Nauk SSSR, 304:2 (1989), 265–268 ; English transl. in Soviet Math. Dokl., 39:1 (1989), 38–41 | MR | Zbl
[19] A. B. Bogatyrev and Q. Gendron, “The number of components of the Pell-Abel equations with primitive solution of given degree”, Uspekhi Mat. Nauk, 78:1(469) (2023), 209–210 ; English transl. in Russian Math. Surveys, 78:1 (2023), 208–210 | DOI | DOI
[20] I. Krichever, S. Lando and A. Skripchenko, “Real-normalized differentials with a single order 2 pole”, Lett. Math. Phys., 111:2 (2021), 36, 19 pp. ; arXiv: 2010.09358 | DOI | MR | Zbl
[21] A. Yu. Solynin, “Quadratic differentials and weighted graphs on compact surfaces”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 473–505 | DOI | MR | Zbl
[22] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Math. Stud., 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | Zbl
[23] A. Bogatyrev, “Effective computation of optimal stability polynomials”, Calcolo, 41:4 (2004), 247–256 | DOI | MR | Zbl
[24] A. B. Bogatyrev, “Effective solution of the problem of the optimal stability polynomial”, Mat. Sb., 196:7 (2005), 27–50 ; English transl. in Sb. Math., 196:7 (2005), 959–981 | DOI | MR | Zbl | DOI