Geometric progression stabilizer in a~general metric
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 363-382

Voir la notice de l'article provenant de la source Math-Net.Ru

So-called normalized metrics are considered on the set of elements of a geometric progression. A full description of normalized metrics with maximal stabilizer, which is the group of integer degrees of the common ratio of the progression, is presented. Previously, it was known that this group is the stabilizer for the minimal normalized metric (inherited from the real line) and the maximal normalized metric (an intrinsic metric all paths in which pass through zero). The stabilizer of a metric space is understood as the set of positive numbers such that multiplying the metric by this number produces a metric space lying at a finite Gromov-Hausdorff distance from the original space. Bibliography: 5 titles.
Keywords: metric space, Gromov-Hausdorff distance, stabilizer.
@article{SM_2023_214_3_a3,
     author = {S. A. Bogatyi},
     title = {Geometric progression stabilizer in a~general metric},
     journal = {Sbornik. Mathematics},
     pages = {363--382},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a3/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - Geometric progression stabilizer in a~general metric
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 363
EP  - 382
VL  - 214
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a3/
LA  - en
ID  - SM_2023_214_3_a3
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T Geometric progression stabilizer in a~general metric
%J Sbornik. Mathematics
%D 2023
%P 363-382
%V 214
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a3/
%G en
%F SM_2023_214_3_a3
S. A. Bogatyi. Geometric progression stabilizer in a~general metric. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 363-382. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a3/