@article{SM_2023_214_3_a2,
author = {E. R. Bigushev and O. N. German},
title = {Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients},
journal = {Sbornik. Mathematics},
pages = {349--362},
year = {2023},
volume = {214},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/}
}
TY - JOUR AU - E. R. Bigushev AU - O. N. German TI - Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients JO - Sbornik. Mathematics PY - 2023 SP - 349 EP - 362 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/ LA - en ID - SM_2023_214_3_a2 ER -
E. R. Bigushev; O. N. German. Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 349-362. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/
[1] S. Lang, Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, ON, 1966, viii+83 pp. | MR | Zbl
[2] A. Ya. Khinchin, Continued fractions, 4th ed., Nauka, Moscow, 1978, 112 pp. ; English transl. of 3d ed., Reprint of the 1964 ed., Dover Publications, Inc., Mineola, NY, 1997, xii+95 pp. | MR | MR | Zbl
[3] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980, x+299 pp. | DOI | MR | Zbl
[4] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895 (1895), 357–359 | Zbl
[5] O. N. German and I. A. Tlyustangelov, “Palindromes and periodic continued fractions”, Mosc. J. Comb. Number Theory, 6:2–3 (2016), 233–252 | MR | Zbl
[6] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Singularities of smooth maps with additional structures, Tr. Mat. Inst. Steklova, 209, Nauka, Fizmatlit, Moscow, 1995, 143–166 ; English transl. in Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl
[7] O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl
[8] O. N. German, “Diophantine exponents of lattices”, Number theory and applications. 1, Sovrem. Probl. Mat., 23, Steklov Mathematical Institute, Moscow, 2016, 35–42 ; English transl. in Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 29–35 | DOI | Zbl | DOI | MR
[9] O. N. German, “Linear forms of a given Diophantine type and lattice exponents”, Izv. Ross. Akad. Nauk Ser. Mat., 84:1 (2020), 5–26 ; English transl. in Izv. Math., 84:1 (2020), 3–22 | DOI | MR | Zbl | DOI
[10] J.-O. Moussafir, “Convex hulls of integral points”, Representation theory, dynamical systems, combinatorial and algorithmic methods. V, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 266, St Petersburg Department of the Steklov Mathematical Institute, St Petersburg, 2000, 188–217 ; J. Math. Sci. (N.Y.), 113:5 (2003), 647–665 | MR | Zbl | DOI
[11] O. N. German, “Klein polyhedra and norm minima of lattices”, Dokl. Ross. Akad. Nauk, 406:3 (2006), 298–302 ; English transl. in Dokl. Math., 73:1 (2006), 38–41 | MR | Zbl | DOI
[12] O. N. German, “Klein polyhedra and lattices with positive norm minima”, J. Théor. Nombres Bordeaux, 19:1 (2007), 175–190 | DOI | MR | Zbl