Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 349-362
Voir la notice de l'article provenant de la source Math-Net.Ru
A three-dimensional analogue of the connection between the exponent of the irrationality of a real number and the growth of the partial quotients of its expansion in a simple continued fraction is investigated. As a multidimensional generalization of continued fractions, Klein polyhedra are considered.
Bibliography: 12 titles.
Keywords:
Diophantine exponents, Klein polyhedra.
@article{SM_2023_214_3_a2,
author = {E. R. Bigushev and O. N. German},
title = {Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients},
journal = {Sbornik. Mathematics},
pages = {349--362},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/}
}
TY - JOUR AU - E. R. Bigushev AU - O. N. German TI - Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients JO - Sbornik. Mathematics PY - 2023 SP - 349 EP - 362 VL - 214 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/ LA - en ID - SM_2023_214_3_a2 ER -
%0 Journal Article %A E. R. Bigushev %A O. N. German %T Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients %J Sbornik. Mathematics %D 2023 %P 349-362 %V 214 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/ %G en %F SM_2023_214_3_a2
E. R. Bigushev; O. N. German. Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 349-362. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/