Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 349-362

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional analogue of the connection between the exponent of the irrationality of a real number and the growth of the partial quotients of its expansion in a simple continued fraction is investigated. As a multidimensional generalization of continued fractions, Klein polyhedra are considered. Bibliography: 12 titles.
Keywords: Diophantine exponents, Klein polyhedra.
@article{SM_2023_214_3_a2,
     author = {E. R. Bigushev and O. N. German},
     title = {Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients},
     journal = {Sbornik. Mathematics},
     pages = {349--362},
     publisher = {mathdoc},
     volume = {214},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/}
}
TY  - JOUR
AU  - E. R. Bigushev
AU  - O. N. German
TI  - Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 349
EP  - 362
VL  - 214
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/
LA  - en
ID  - SM_2023_214_3_a2
ER  - 
%0 Journal Article
%A E. R. Bigushev
%A O. N. German
%T Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
%J Sbornik. Mathematics
%D 2023
%P 349-362
%V 214
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/
%G en
%F SM_2023_214_3_a2
E. R. Bigushev; O. N. German. Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 349-362. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a2/