Mots-clés : Liouville foliation
@article{SM_2023_214_3_a1,
author = {M. K. Altuev and V. A. Kibkalo},
title = {Topological analysis of {pseudo-Euclidean} {Euler} top for special values of the parameters},
journal = {Sbornik. Mathematics},
pages = {334--348},
year = {2023},
volume = {214},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a1/}
}
M. K. Altuev; V. A. Kibkalo. Topological analysis of pseudo-Euclidean Euler top for special values of the parameters. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 334-348. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a1/
[1] S. Smale, “Topology and mechanics. 1”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR | Zbl
[2] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Udmurtian University Publishing House, Izhevsk, 1999, 444 pp., 447 pp. ; English transl., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl | DOI | MR | Zbl
[3] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Dokl. Akad. Nauk SSSR, 287:5 (1986), 1071–1075 ; English transl. in Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[4] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Izv. Akad. Nauk SSSR Ser. Mat., 50:6 (1986), 1276–1307 ; English transl. in Math. USSR-Izv., 29:3 (1987), 629–658 | MR | Zbl | DOI
[5] A. T. Fomenko and Kh. Tsishang (H. Zieschang), “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990), 546–575 ; English transl. in Math. USSR-Izv., 36:3 (1991), 567–596 | MR | Zbl | DOI
[6] A. V. Bolsinov, S. V. Matveev and A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Uspekhi Mat. Nauk, 45:2(272) (1990), 49–77 ; English transl. in Russian Math. Surveys, 45:2 (1990), 59–94 | MR | Zbl | DOI
[7] A. T. Fomenko and S. V. Matveev, Algorithmic and computer methods for three-manifolds, Moscow University Publishing House, Moscow, 1991, 303 pp. ; English transl., Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | MR | Zbl | DOI | MR | Zbl
[8] S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060 | DOI | MR | Zbl
[9] S. S. Nikolaenko, “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Mat. Sb., 211:8 (2020), 68–101 ; English transl. in Sb. Math., 211:8 (2020), 1127–1158 | DOI | MR | Zbl | DOI
[10] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Ross. Akad. Nauk Ser. Mat., 81:4 (2017), 20–67 ; English transl. in Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl | DOI
[11] E. A. Kudryavtseva and T. A. Lepskii, “Topology of foliations and Liouville's theorem for integrable system with incomplete flows”, Tr. Semin. Vektor. Tenzor. Anal., no. 27, 2011, 106–149 (Russian)
[12] D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$”, Mat. Sb., 202:5 (2011), 127–160 ; English transl. in Sb. Math., 202:5 (2011), 749–781 | DOI | MR | DOI | Zbl
[13] D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Mat. Sb., 205:8 (2014), 41–66 ; English transl. in Sb. Math., 205:8 (2014), 1107–1132 | DOI | MR | Zbl | DOI
[14] E. A. Kudryavtseva, “An analogue of the Liouville theorem for integrable Hamiltonian systems with incomplete flows”, Dokl. Ross. Akad. Nauk, 445:4 (2012), 383–385 ; English transl. in Dokl. Math., 86:1 (2012), 527–529 | MR | Zbl | DOI
[15] K. R. Aleshkin, “The topology of integrable systems with incomplete fields”, Mat. Sb., 205:9 (2014), 49–64 ; English transl. in Sb. Math., 205:9 (2014), 1264–1278 | DOI | MR | Zbl | DOI
[16] D. A. Fedoseev and A. T. Fomenko, “Noncompact bifurcations of integrable dynamic systems”, Fundam. Prikl. Mat., 21:6 (2016), 217–243 ; English transl. in J. Math. Sci. (N.Y.), 248:6 (2020), 810–827 | MR | Zbl | DOI
[17] E. A. Kudryavtseva and D. A. Fedoseev, “Mechanical systems with closed orbits on manifolds of revolution”, Mat. Sb., 206:5 (2015), 107–126 ; English transl. in Sb. Math., 206:5 (2015), 718–737 | DOI | MR | Zbl | DOI
[18] O. A. Zagryadskii, E. A. Kudryavtseva and D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Mat. Sb., 203:8 (2012), 39–78 ; English transl. in Sb. Math., 203:8 (2012), 1112–1150 | DOI | MR | Zbl | DOI
[19] S. S. Nikolaenko, “Topological classification of noncompact 3-atoms with circle action”, Chebyshevskii Sb., 22:5 (2021), 185–197 (Russian) | DOI | MR
[20] V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 6 (2020), 56–59 ; English transl. in Moscow Univ. Math. Bull., 75:6 (2020), 263–267 | MR | Zbl | DOI
[21] C. V. Sokolov, “Kovalevskaya's integrable case in a non-Euclidean space: separation of variables”, Tr. Mosk. Aviatsionn. Inst., 100 (2018), 4, 13 pp. (Russian)
[22] A. V. Borisov and I. S. Mamaev, “Rigid body dynamics in non-Euclidean spaces”, Russ. J. Math. Phys., 23:4 (2016), 431–454 | DOI | MR | Zbl
[23] Classical dynamics in non-Euclidean spaces, eds. A. V. Borisov and I. S. Mamaev, Institute for Computer Studies, Moscow–Izhevsk, 2004, 348 pp. (Russian)