Geometric progressions in distance spaces; applications to fixed points and coincidence points
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 246-272

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions on spaces $X$ with generalized distance $\rho_X$ are investigates under which analogues of Banach's and Nadler's fixed-point theorems and Arutyunov's coincidence-point theorem can be obtained for mappings on such spaces. This is shown to hold if each geometric progression with ratio $1$ (that is, each sequence $\{ x_i\}\subset X$ satisfying $\rho_X(x_{i+1},x_i)\leq \gamma \rho_X(x_i,x_{i-1})$, $ i=1,2,\dots$, with some $\gamma 1$) is convergent. Examples of spaces with and without this property are given. In particular, the required property holds in a complete $f$-quasimetric space $X$ if the distance $\rho_X$ in it satisfies $\rho_X(x,z) \leq \rho_X(x,y)+(\rho_X(y,z))^\eta$, $x,y,z \in X$, for some $\eta\in (0,1)$, that is, if the function $f\colon\mathbb{R}_+^{2} \to \mathbb{R}_+$ is given by $f(r_1,r_2)=r_1 + r_2^{\eta}$. Next, for $f(r_1,r_2)=\max\bigl\{ r_1^{\eta}, r_2^{\eta} \}$, where $\eta \in (0,2^{-1}]$, it is shown that for any $\gamma > 0$ there exists an $f$-quasimetric space containing a geometric progression with ratio $\gamma$ which is not a Cauchy sequence. The ‘zero-one law’, which means that either each geometric progression with ratio $1$ is a Cauchy sequence or, for any $\gamma\in (0,1)$, there exists a geometric progression with ratio $\gamma$ that is not Cauchy, is discussed for $f$-quasimetric spaces. Bibliography: 29 titles.
Keywords: fixed point, coincidence point, geometric progression.
Mots-clés : $f$-quasimetric
@article{SM_2023_214_2_a5,
     author = {E. S. Zhukovskiy},
     title = {Geometric progressions in distance spaces; applications to fixed points and coincidence points},
     journal = {Sbornik. Mathematics},
     pages = {246--272},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - Geometric progressions in distance spaces; applications to fixed points and coincidence points
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 246
EP  - 272
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/
LA  - en
ID  - SM_2023_214_2_a5
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T Geometric progressions in distance spaces; applications to fixed points and coincidence points
%J Sbornik. Mathematics
%D 2023
%P 246-272
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/
%G en
%F SM_2023_214_2_a5
E. S. Zhukovskiy. Geometric progressions in distance spaces; applications to fixed points and coincidence points. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 246-272. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/