Geometric progressions in distance spaces; applications to fixed points and coincidence points
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 246-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions on spaces $X$ with generalized distance $\rho_X$ are investigates under which analogues of Banach's and Nadler's fixed-point theorems and Arutyunov's coincidence-point theorem can be obtained for mappings on such spaces. This is shown to hold if each geometric progression with ratio $<1$ (that is, each sequence $\{ x_i\}\subset X$ satisfying $\rho_X(x_{i+1},x_i)\leq \gamma \rho_X(x_i,x_{i-1})$, $ i=1,2,\dots$, with some $\gamma < 1$) is convergent. Examples of spaces with and without this property are given. In particular, the required property holds in a complete $f$-quasimetric space $X$ if the distance $\rho_X$ in it satisfies $\rho_X(x,z) \leq \rho_X(x,y)+(\rho_X(y,z))^\eta$, $x,y,z \in X$, for some $\eta\in (0,1)$, that is, if the function $f\colon\mathbb{R}_+^{2} \to \mathbb{R}_+$ is given by $f(r_1,r_2)=r_1 + r_2^{\eta}$. Next, for $f(r_1,r_2)=\max\bigl\{ r_1^{\eta}, r_2^{\eta} \}$, where $\eta \in (0,2^{-1}]$, it is shown that for any $\gamma > 0$ there exists an $f$-quasimetric space containing a geometric progression with ratio $\gamma$ which is not a Cauchy sequence. The ‘zero-one law’, which means that either each geometric progression with ratio $<1$ is a Cauchy sequence or, for any $\gamma\in (0,1)$, there exists a geometric progression with ratio $\gamma$ that is not Cauchy, is discussed for $f$-quasimetric spaces. Bibliography: 29 titles.
Keywords: fixed point, coincidence point, geometric progression.
Mots-clés : $f$-quasimetric
@article{SM_2023_214_2_a5,
     author = {E. S. Zhukovskiy},
     title = {Geometric progressions in distance spaces; applications to fixed points and coincidence points},
     journal = {Sbornik. Mathematics},
     pages = {246--272},
     year = {2023},
     volume = {214},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - Geometric progressions in distance spaces; applications to fixed points and coincidence points
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 246
EP  - 272
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/
LA  - en
ID  - SM_2023_214_2_a5
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T Geometric progressions in distance spaces; applications to fixed points and coincidence points
%J Sbornik. Mathematics
%D 2023
%P 246-272
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/
%G en
%F SM_2023_214_2_a5
E. S. Zhukovskiy. Geometric progressions in distance spaces; applications to fixed points and coincidence points. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 246-272. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl

[2] S. B. Nadler, Jr., “Multi-valued contraction mappings”, Pacific J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl

[3] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Ross. Akad. Nauk, 416:2 (2007), 151–155 ; English transl. in Dokl. Math., 76:2 (2007), 665–668 | MR | Zbl | DOI

[4] A. Arutyunov, E. Avakov, B. Gel'man, A. Dmitruk and V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5:1 (2009), 105–127 | DOI | MR | Zbl

[5] E. R. Avakov, A. V. Arutyunov and E. S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Differ. Uravn., 45:5 (2009), 613–634 ; English transl. in Diff. Equ., 45:5 (2009), 627–649 | MR | Zbl | DOI

[6] A. V. Arutyunov, E. S. Zhukovskiy and S. E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Anal., 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[7] A. V. Arutyunov, E. S. Zhukovskiy and S. E. Zhukovskiy, “On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces”, Mat. Sb., 209:8 (2018), 3–28 ; English transl. in Sb. Math., 209:8 (2018), 1107–1130 | DOI | MR | Zbl | DOI

[8] E. S. Zhukovskiy, “On coincidence points of multivalued vector mappings of metric spaces”, Mat. Zametki, 100:3 (2016), 344–362 ; English transl. in Math. Notes, 100:3 (2016), 363–379 | DOI | MR | Zbl | DOI

[9] Z. T. Zhukovskaya and S. E. Zhukovskiy, “Perturbating the problem of fixed points of continuous maps”, Vestn. Ross. Univ. Mat., 26:135 (2021), 241–249 (Russian) | DOI | Zbl

[10] T. N. Fomenko, “Approximation of coincidence points and common fixed points of a collection of mappings of metric spaces”, Mat. Zametki, 86:1 (2009), 110–125 ; English transl. in Math. Notes, 86:1 (2009), 107–120 | DOI | MR | Zbl | DOI

[11] T. N. Fomenko, “Cascade search of the coincidence set of collections of multivalued mappings”, Mat. Zametki, 86:2 (2009), 304–309 ; English transl. in Math. Notes, 86:2 (2009), 276–281 | DOI | MR | Zbl | DOI

[12] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl

[13] T. N. Fomenko, “Cascade search of the coincidence set of collections of multivalued mappings”, Mat. Zametki, 93:1 (2013), 127–143 ; English transl. in Math. Notes, 93:1 (2013), 172–186 | DOI | MR | Zbl | DOI

[14] E. S. Zhukovskiy, “The fixed points of contractions of $f$-quasimetric spaces”, Sibirsk. Mat. Zh., 59:6 (2018), 1338–1350 ; English transl. in Siberian Math. J., 59:6 (2018), 1063–1072 | DOI | MR | Zbl | DOI

[15] T. N. Fomenko, “The existence of zeros of multivalued functionals, coincidence points, and fixed points in $f$-quasimetric spaces”, Mat. Zametki, 110:4 (2021), 598–609 ; English transl. in Math. Notes, 110:4 (2021), 583–591 | DOI | MR | Zbl | DOI

[16] A. V. Arutyunov and A. V. Greshnov, “Theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Dokl. Ross. Akad. Nauk, 469:5 (2016), 527–531 ; English transl. in Dokl. Math., 94:1 (2016), 434–437 | DOI | MR | Zbl | DOI

[17] A. V. Arutyunov and A. V. Greshnov, “Coincidence points of multivalued mappings in $(q_1, q_2)$-quasimetric spaces”, Dokl. Ross. Akad. Nauk, 476:2 (2017), 129–132 ; English transl. in Dokl. Math., 96:2 (2017), 438–441 | DOI | MR | Zbl | DOI

[18] A. V. Arutyunov and A. V. Greshnov, “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izv. Ross. Akad. Nauk Ser. Mat., 82:2 (2018), 3–32 ; English transl. in Izv. Math., 82:2 (2018), 245–272 | DOI | MR | Zbl | DOI

[19] A. V. Arutyunov and A. V. Greshnov, “$(q_1, q_2)$-quasimetric spaces. Covering mappings and coincidence points. A review of the results”, Fixed Point Theory, 23:2 (2022), 473–486 | DOI | MR

[20] T. N. Fomenko, “Search for zeros of functionals, fixed points, and mappings coincidence in quasi-metric spaces”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2019, no. 6, 14–22 ; English transl. in Moscow Univ. Math. Bull., 74:6 (2019), 227–234 | MR | Zbl | DOI

[21] P. S. Alexandroff and V. V. Nemytskii, “One condition for metrizability of topological spaces and symmetric axiom”, Mat. Sb., 3(45):3 (1938), 663–672 (Russian) | Zbl

[22] W. A. Wilson, “On quasi-metric spaces”, Amer. J. Math., 53:3 (1931), 675–684 | DOI | MR | Zbl

[23] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii and K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl

[24] M. Fréchet, “Sur quelques points du calcul fonctionnel”, Rend. Circ. Mat. Palermo, 22 (1906), 1–72 | DOI | Zbl

[25] A. D. Pitcher and E. W. Chittenden, “On the foundations of the calcul fonctionnel of Fréchet”, Trans. Amer. Math. Soc., 19:1 (1918), 66–78 | DOI | MR | Zbl

[26] Z. T. Zhukovskaya, S. E. Zhukovskiy and R. Sengupta, “Sharp triangle inequalities in $(q_1,q_2)$-quasisymmetric spaces”, Vestn. Ross. Univ. Mat., 24:125 (2019), 33–38 (Russian) | DOI

[27] S. I. Nedev, “$O$-metrizable spaces”, Tr. Mosk. Mat. Obshch., 24, Moscow University Publishing House, Moscow, 1971, 201–236 ; English transl. in Trans. Moscow Math. Soc., 24 (1974), 213–247 | MR | Zbl

[28] T. V. Zhukovskaya and E. S. Zhukovskiy, “On one quasimetric space”, Vestn. Tambov. Univ. Ser. Estestv. Tekhn. Nauk., 22:6 (2017), 1285–1292 (Russian) | DOI

[29] R. Sengupta, “On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76 | MR | Zbl