Geometric progressions in distance spaces; applications to fixed points and coincidence points
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 246-272
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions on spaces $X$ with generalized distance $\rho_X$ are investigates under which analogues of Banach's and Nadler's fixed-point theorems and Arutyunov's coincidence-point theorem can be obtained for mappings on such spaces. This is shown to hold if each geometric progression with ratio $1$ (that is, each sequence $\{ x_i\}\subset X$ satisfying $\rho_X(x_{i+1},x_i)\leq \gamma \rho_X(x_i,x_{i-1})$, $ i=1,2,\dots$, with some $\gamma  1$) is convergent. Examples of spaces with and without this property are given. In particular, the required property holds in a complete $f$-quasimetric space $X$ if the distance $\rho_X$ in it satisfies $\rho_X(x,z) \leq \rho_X(x,y)+(\rho_X(y,z))^\eta$, $x,y,z \in X$, for some $\eta\in (0,1)$, that is, if the function $f\colon\mathbb{R}_+^{2} \to \mathbb{R}_+$ is given by $f(r_1,r_2)=r_1 + r_2^{\eta}$. Next, for $f(r_1,r_2)=\max\bigl\{ r_1^{\eta}, r_2^{\eta} \}$, where $\eta \in (0,2^{-1}]$, it is shown that for any $\gamma > 0$ there exists an $f$-quasimetric space containing a geometric progression with ratio $\gamma$ which is not a Cauchy sequence. The ‘zero-one law’, which means that either each geometric progression with ratio $1$ is a Cauchy sequence or, for any $\gamma\in (0,1)$, there exists a geometric progression with ratio $\gamma$ that is not Cauchy, is discussed for $f$-quasimetric spaces. 
Bibliography: 29 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
fixed point, coincidence point, geometric progression.
Mots-clés : $f$-quasimetric
                    
                  
                
                
                Mots-clés : $f$-quasimetric
@article{SM_2023_214_2_a5,
     author = {E. S. Zhukovskiy},
     title = {Geometric progressions in distance spaces; applications to fixed points and coincidence points},
     journal = {Sbornik. Mathematics},
     pages = {246--272},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/}
}
                      
                      
                    TY - JOUR AU - E. S. Zhukovskiy TI - Geometric progressions in distance spaces; applications to fixed points and coincidence points JO - Sbornik. Mathematics PY - 2023 SP - 246 EP - 272 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/ LA - en ID - SM_2023_214_2_a5 ER -
E. S. Zhukovskiy. Geometric progressions in distance spaces; applications to fixed points and coincidence points. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 246-272. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a5/
