Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 226-245

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the multiplicity of limit cycles appearing after a perturbation of a hyperbolic polycycle with generic set of characteristic numbers is considered. In particular, it is proved that the multiplicity of any limit cycle appearing after a perturbation in a smooth finite-parameter family does not exceed the number of separatrix connections forming the polycycle. Bibliography: 10 titles.
Keywords: multiple fixed points.
Mots-clés : limit cycles, polycycles
@article{SM_2023_214_2_a4,
     author = {A. V. Dukov},
     title = {Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles},
     journal = {Sbornik. Mathematics},
     pages = {226--245},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a4/}
}
TY  - JOUR
AU  - A. V. Dukov
TI  - Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 226
EP  - 245
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a4/
LA  - en
ID  - SM_2023_214_2_a4
ER  - 
%0 Journal Article
%A A. V. Dukov
%T Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles
%J Sbornik. Mathematics
%D 2023
%P 226-245
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_2_a4/
%G en
%F SM_2023_214_2_a4
A. V. Dukov. Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 226-245. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a4/