Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 226-245
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of the multiplicity of limit cycles appearing after a perturbation of a hyperbolic polycycle with generic set of characteristic numbers is considered. In particular, it is proved that the multiplicity of any limit cycle appearing after a perturbation in a smooth finite-parameter family does not exceed the number of separatrix connections forming the polycycle.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multiple fixed points.
Mots-clés : limit cycles, polycycles
                    
                  
                
                
                Mots-clés : limit cycles, polycycles
@article{SM_2023_214_2_a4,
     author = {A. V. Dukov},
     title = {Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles},
     journal = {Sbornik. Mathematics},
     pages = {226--245},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a4/}
}
                      
                      
                    A. V. Dukov. Multiplicities of limit cycles appearing after perturbations of hyperbolic polycycles. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 226-245. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a4/
