Cousin complex on the complement to the strict normal-crossing divisor in a~local essentially smooth scheme over a~field
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 210-225

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $\mathbb{A}^1$-invariant cohomology theory that satisfies Nisnevich excision on the category of smooth schemes over a field $k$ it is proved that the Cousin complex on the complement $U-D$ to the strict normal-crossing divisor $D$ in a local essentially smooth scheme $U$ is acyclic. This claim is also proved for the schemes $(X-D)\times(\mathbb{A}^1_k-Z_0)\times\dots\times(\mathbb{A}^1_k-Z_l)$, where $Z_0,\dots,Z_l$ is a finite family of closed subschemes in the affine line over $k$. Bibliography: 32 titles.
Keywords: Gersten conjecture, Cousin complex, motivic cohomologies.
@article{SM_2023_214_2_a3,
     author = {A. E. Druzhinin},
     title = {Cousin complex on the complement to the strict normal-crossing divisor in a~local essentially smooth scheme over a~field},
     journal = {Sbornik. Mathematics},
     pages = {210--225},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a3/}
}
TY  - JOUR
AU  - A. E. Druzhinin
TI  - Cousin complex on the complement to the strict normal-crossing divisor in a~local essentially smooth scheme over a~field
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 210
EP  - 225
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a3/
LA  - en
ID  - SM_2023_214_2_a3
ER  - 
%0 Journal Article
%A A. E. Druzhinin
%T Cousin complex on the complement to the strict normal-crossing divisor in a~local essentially smooth scheme over a~field
%J Sbornik. Mathematics
%D 2023
%P 210-225
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_2_a3/
%G en
%F SM_2023_214_2_a3
A. E. Druzhinin. Cousin complex on the complement to the strict normal-crossing divisor in a~local essentially smooth scheme over a~field. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 210-225. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a3/