On uniqueness for Franklin series with a~convergent subsequence of partial sums
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 197-209

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.
Keywords: Franklin system, Franklin series, uniqueness theorem, Fourier-Franklin series.
@article{SM_2023_214_2_a2,
     author = {G. G. Gevorkyan},
     title = {On uniqueness for {Franklin} series with a~convergent subsequence of partial sums},
     journal = {Sbornik. Mathematics},
     pages = {197--209},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On uniqueness for Franklin series with a~convergent subsequence of partial sums
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 197
EP  - 209
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/
LA  - en
ID  - SM_2023_214_2_a2
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On uniqueness for Franklin series with a~convergent subsequence of partial sums
%J Sbornik. Mathematics
%D 2023
%P 197-209
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/
%G en
%F SM_2023_214_2_a2
G. G. Gevorkyan. On uniqueness for Franklin series with a~convergent subsequence of partial sums. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 197-209. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/