On uniqueness for Franklin series with a convergent subsequence of partial sums
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 197-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})<\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|<\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.
Keywords: Franklin system, Franklin series, uniqueness theorem, Fourier-Franklin series.
@article{SM_2023_214_2_a2,
     author = {G. G. Gevorkyan},
     title = {On uniqueness for {Franklin} series with a~convergent subsequence of partial sums},
     journal = {Sbornik. Mathematics},
     pages = {197--209},
     year = {2023},
     volume = {214},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On uniqueness for Franklin series with a convergent subsequence of partial sums
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 197
EP  - 209
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/
LA  - en
ID  - SM_2023_214_2_a2
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On uniqueness for Franklin series with a convergent subsequence of partial sums
%J Sbornik. Mathematics
%D 2023
%P 197-209
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/
%G en
%F SM_2023_214_2_a2
G. G. Gevorkyan. On uniqueness for Franklin series with a convergent subsequence of partial sums. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 197-209. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a2/

[1] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Math. Ann., 5:1 (1872), 123–132 | DOI | MR | Zbl

[2] N. K. Bary, A treatise on trigonometric series, Fizmatgiz, Moscow, 1961, 936 pp. ; English transl., v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[3] G. Kozma and A. M. Olevskiĭ, “Cantor uniqueness and multiplicity along subsequences”, Algebra i Analiz, 32:2 (2020), 85–106 ; St. Petersburg Math. J., 32:2 (2021), 261–277 | MR | Zbl | DOI

[4] N. N. Kholshchevnikova, “Sum of everywhere convergent trigonometric series”, Mat. Zametki, 75:3 (2004), 470–473 ; English transl. in Math. Notes, 75:3 (2004), 439–443 | DOI | MR | Zbl | DOI

[5] V. A. Skvortsov and N. N. Kholshchevnikova, “Comparison of two generalized trigonometric integrals”, Mat. Zametki, 79:2 (2006), 278–287 ; English transl. in Math. Notes, 79:2 (2006), 254–262 | DOI | MR | Zbl | DOI

[6] G. G. Gevorkyan, “Uniqueness theorems for simple trigonometric series with application to multiple series”, Mat. Sb., 212:12 (2021), 20–39 ; English transl. in Sb. Math., 212:12 (2021), 1675–1693 | DOI | MR | Zbl | DOI

[7] F. G. Arutyunyan, “Series in the Haar system”, Dokl. Akad. Nauk Arm. SSR, 42:3 (1966), 134–140 (Russian) | MR | Zbl

[8] M. B. Petrovskaya, “Null series in Haar systems and uniqueness sets”, Izv. Akad. Nauk SSSR Ser. Mat., 28:4 (1964), 773–798 (Russian) | MR | Zbl

[9] V. A. Skvortsov, “A Cantor-type theorem for the Haar system”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 1964, no. 5, 3–6 (Russian) | MR | Zbl

[10] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Jber. Deutsch. Math.-Verein., 19 (1910), 104–112 | Zbl

[11] F. G. Arutynyan and A. A. Talalyan, “Uniqueness for series in the Haar and Walsh systems”, Izv. Akad. Nauk SSSR Ser. Mat., 28:6 (1964), 1391–1408 (Russian) | MR | Zbl

[12] M. G. Plotnikov, “$\lambda$-convergence of multiple Walsh-Paley series and sets of uniqueness”, Mat. Zametki, 102:2 (2017), 292–301 ; English transl. in Math. Notes, 102:2 (2017), 268–276 | DOI | MR | Zbl | DOI

[13] M. G. Plotnikov and Yu. A. Plotnikova, “Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a Haar system”, Mat. Sb., 207:3 (2016), 137–152 ; English transl. in Sb. Math., 207:3 (2016), 444–457 | DOI | MR | Zbl | DOI

[14] G. G. Gevorkyan and K. A. Navasardyan, “Uniqueness theorems for generalized Haar systems”, Mat. Zametki, 104:1 (2018), 11–24 ; English transl. in Math. Notes, 104:1 (2018), 10–21 | DOI | MR | Zbl | DOI

[15] G. G. Gevorkyan and K. A. Navasardyan, “Uniqueness theorems for series by Vilenkin system”, Izv. Nats. Akad. Nauk Armenii Mat., 53:2 (2018), 15–30 ; English transl. in J. Contemp. Math. Anal., 53:2 (2018), 88–99 | MR | Zbl | DOI

[16] G. G. Gevorkyan, “Uniqueness theorems for series in the Franklin system”, Mat. Zametki, 98:5 (2015), 786–789 ; English transl. in Math. Notes, 98:5 (2015), 847–851 | DOI | MR | Zbl | DOI

[17] G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Math. Sb., 207:12 (2016), 30–53 ; English transl. in Sb. Math., 207:12 (2016), 1650–1673 | DOI | MR | Zbl | DOI

[18] G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Mat. Sb., 209:6 (2018), 25–46 ; English transl. in Sb. Math., 209:6 (2018), 802–822 | DOI | MR | Zbl | DOI

[19] G. G. Gevorkyan, “Ciesielski and Franklin systems”, Approximation and probability, Banach Center Publ., 72, Polish Acad. Sci. Inst. Math., Warsaw, 2006, 85–92 | DOI | MR | Zbl

[20] Z. Wronicz, “On a problem of Gevorkyan for the Franklin system”, Opuscula Math., 36:5 (2016), 681–687 | DOI | MR | Zbl

[21] Z. Wronicz, “Uniqueness of series in the Franklin system and the Gevorkyan problems”, Opuscula Math., 41:2 (2021), 269–276 | DOI | MR | Zbl

[22] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | DOI | MR | Zbl

[23] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl

[24] G. G. Gevorkyan, “On a “martingale property” of Franklin series”, Anal. Math., 45:4 (2019), 803–815 | DOI | MR | Zbl