On volumes of hyperbolic right-angled polyhedra
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 148-165
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			New upper bounds for the volumes of right-angled polyhedra in hyperbolic space $\mathbb{H}^3$ are obtained in the following three cases: for ideal polyhedra with all vertices on the ideal hyperbolic boundary; for compact polyhedra with only finite vertices; and for finite-volume polyhedra with vertices of both types.
Bibliography: 23 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
right-angled polyhedra, hyperbolic space, hyperbolic knots and links.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_2_a0,
     author = {S. A. Alexandrov and N. V. Bogachev and A. Yu. Vesnin and A. A. Egorov},
     title = {On volumes of hyperbolic right-angled polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {148--165},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a0/}
}
                      
                      
                    TY - JOUR AU - S. A. Alexandrov AU - N. V. Bogachev AU - A. Yu. Vesnin AU - A. A. Egorov TI - On volumes of hyperbolic right-angled polyhedra JO - Sbornik. Mathematics PY - 2023 SP - 148 EP - 165 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_2_a0/ LA - en ID - SM_2023_214_2_a0 ER -
S. A. Alexandrov; N. V. Bogachev; A. Yu. Vesnin; A. A. Egorov. On volumes of hyperbolic right-angled polyhedra. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 148-165. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a0/
