Mots-clés : singular perturbations
@article{SM_2023_214_1_a3,
author = {S. A. Nazarov},
title = {`Far interaction' of small spectral perturbations of the {Neumann} boundary conditions for an elliptic system of differential equations in a~three-dimensional domain},
journal = {Sbornik. Mathematics},
pages = {58--107},
year = {2023},
volume = {214},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/}
}
TY - JOUR AU - S. A. Nazarov TI - `Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain JO - Sbornik. Mathematics PY - 2023 SP - 58 EP - 107 VL - 214 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/ LA - en ID - SM_2023_214_1_a3 ER -
%0 Journal Article %A S. A. Nazarov %T `Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain %J Sbornik. Mathematics %D 2023 %P 58-107 %V 214 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/ %G en %F SM_2023_214_1_a3
S. A. Nazarov. `Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 58-107. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/
[1] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Nauka, Moscow, 1973, 407 pp. ; English transl., Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | MR | Zbl | DOI | MR | Zbl
[2] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | Zbl
[3] M. Sh. Birman and M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Leningrad University Publishing House, Leningrad, 1980, 264 pp. ; English transl., Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl | MR
[4] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Éd., Prague, 1967, 351 pp. | MR | Zbl
[5] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, Problemy Mat. Anal., 16, St Petersburg University Publishing House, St Petersburg, 1997, 167–192 ; English transl. in J. Math. Sci. (N.Y.), 92:6 (1998), 4338–4353 | Zbl | DOI | MR
[6] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Uspekhi Mat. Nauk, 54:5(329) (1999), 77–142 ; English transl. in Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl | DOI
[7] J. J. Stoker, Water waves. The mathematical theory with applications, Wiley Classics Lib., Reprint of the 1957 original, John Wiley Sons, Inc., New York, 1992, xxvi+567 pp. | DOI | MR | Zbl
[8] N. Kuznetsov, V. Maz'ya and B. Vainberg, Linear water waves. A mathematical approach, Cambridge Univ. Press, Cambridge, 2002, xviii+513 pp. | DOI | MR | Zbl
[9] S. A. Nazarov, Asymptotic theory of thin plates and rods. Dimension reduction and integral bounds, Nauchnaya Kniga, Novosibirsk, 2002, 408 pp. (Russian)
[10] S. Langer, S. A. Nazarov and M. Shpekovius-Noĭgebauer, “Affine transforms of three-dimensional anisotropic media and explicit formulas for fundamental matrices”, Prikl. Mekh. Tekhn. Fiz., 47:2 (2006), 95–102 ; English transl. in J. Appl. Mech. Tech. Phys., 47:2 (2006), 229–235 | MR | Zbl | DOI
[11] D. Gómez, S. A. Nazarov and E. Pérez, “Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2 (2018), 35, 23 pp. | DOI | MR | Zbl
[12] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Uspekhi Mat. Nauk, 63:1(379) (2008), 37–110 ; English transl. in Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | MR | Zbl | DOI
[13] E. Pérez, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883 | DOI | MR | Zbl
[14] S. A. Nazarov, “Asymptotics of the solution of the Steklov spectral problem in a domain with a blunted peak”, Mat. Zametki, 86:4 (2009), 571–587 ; English transl. in Math. Notes, 86:4 (2009), 542–555 | DOI | MR | Zbl | DOI
[15] G. Cardone, T. Durante and S. A. Nazarov, “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004 | DOI | MR | Zbl
[16] S. A. Nazarov, “Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions”, Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 2033–2049 ; English transl. in Comput. Math. Math. Phys., 52:11 (2012), 1574–1589 | MR | Zbl | DOI
[17] S. A. Nazarov, “Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains”, Algebra i Analiz, 26:2 (2014), 119–184 ; English transl. in St. Petersburg Math. J., 26:2 (2015), 273–318 | MR | Zbl | DOI
[18] S. Gryshchuk and M. Lanza de Cristoforis, “Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Math. Methods Appl. Sci., 37:12 (2014), 1755–1771 | DOI | MR | Zbl
[19] S. A. Nazarov, “Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems”, Funktsional. Anal. Prilozhen., 49:1 (2015), 31–48 ; English transl. in Funct. Anal. Appl., 49:1 (2015), 25–39 | DOI | MR | Zbl | DOI
[20] Y. Amirat, O. Bodart, G. A. Chechkin and A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671 | DOI | MR | Zbl
[21] A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Ross. Akad. Nauk Ser. Mat., 81:1 (2017), 203–240 ; English transl. in Izv. Math., 81:1 (2017), 199–236 | DOI | MR | Zbl | DOI
[22] R. R. Gadyl'shin, A. L. Piatnitskii and G. A. Chechkin, “On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type”, Izv. Ross. Akad. Nauk Ser. Mat., 82:6 (2018), 37–64 ; English transl. in Izv. Math., 82:6 (2018), 1108–1135 | DOI | MR | Zbl | DOI
[23] S. A. Nazarov and J. Taskinen, ““Blinking eigenvalues” of the Steklov problem generate the continuous spectrum in a cuspidal domain”, J. Differential Equations, 269:4 (2020), 2774–2797 | DOI | MR | Zbl
[24] M. Lanza de Cristoforis, “Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Asymptot. Anal., 121:3–4 (2021), 335–365 | DOI | MR | Zbl
[25] V. Chiadò Piat and S. A. Nazarov, “Steklov spectral problems in a set with a thin toroidal hole”, Partial Differential Equations in Applied Mathematics, 1 (2020), 100007, 13 pp. | DOI
[26] V. Chiadò Piat and S. A. Nazarov, “Mixed boundary value problems in singularly perturbed two-dimensional domains with the Steklov spectral condition”, Problemy Mat. Anal., 106, Tamara Rozhkovskaya, Novosibirsk, 2020, 91–124 ; English transl. in J. Math. Sci. (N.Y.), 251:5 (2020), 655–695 | MR | Zbl | DOI
[27] A. G. Chechkina, “On the behavior of the spectrum of a perturbed Steklov boundary value problem with a weak singularity”, Differ. Uravn., 57:10 (2021), 1407–1420 ; English transl. in Differ. Equ., 57:10 (2021), 1382–1395 | MR | Zbl | DOI
[28] D. Gómez, S. A. Nazarov and M.-E. Pérez-Martínez, “Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation”, J. Elasticity, 142:1 (2020), 89–120 | DOI | MR | Zbl
[29] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Modél. Math. Anal. Numér., 27:6 (1993), 777–799 | DOI | MR | Zbl
[30] S. A. Nazarov, “A Sanchez-Palencia problem with Neumann boundary conditions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 11, 60–66 ; English transl. in Soviet Math. (Iz. VUZ), 33:11 (1989), 73–78 | MR | Zbl
[31] J. Caínzos, E. Pérez and M. Vilasánchez, “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987 | DOI | MR | Zbl
[32] D. Gómez, S. A. Nazarov and M.-E. Pérez, “Formal asymptotics of eigenmodes for oscillating elastic spatial bodies with concentrated masses”, Mathematical questions in wave propagation theory. 36, Zap. Nauchn. Semin. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 342, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2007, 31–76 ; English transl. in J. Math. Sci. (N.Y.), 148:5 (2008), 650–674 | MR | Zbl | DOI
[33] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Tr. Mosk. Mat. Obshch., 16, Moscow University Publishing House, Moscow, 1967, 209–292 ; English transl. in Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl
[34] S. A. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991, 336 pp.; English transl., de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[35] V. G. Maz'ya and B. A. Plamenevskiĭ, “On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points”, Math. Nachr., 76 (1977), 29–60 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 57–88 | DOI | MR | Zbl | DOI
[36] V. G. Maz'ya and B. A. Plamenevskiĭ, “Estimates in $L_p$ and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary”, Math. Nachr., 81:1 (1978), 25–82 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 1–56 | DOI | MR | Zbl | DOI
[37] M. I. Višik (Vishik) and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk, 12:5(77) (1957), 3–122 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | MR | Zbl | DOI | MR | Zbl
[38] V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp. ; v. II, Oper. Theory Adv. Appl., 112, xxiv+323 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[39] Yu. N. Rabotnov, Mechanics of a deformed rigid body, 2nd ed., Nauka, Moscow, 1988, 712 pp. (Russian) | Zbl
[40] Ya. S. Uflyand, Integral transformations in elasticity problems, 2nd augmented ed., Nauka, Leningrad, 1967, 420 pp. (Russian) | MR
[41] S. G. Mikhlin, Variational methods in mathematical physics, 2nd revised and augmented ed., Nauka, Moscow, 1970, 512 pp. ; English transl. of 1st ed., Internat. Ser. Monogr. Pure Appl. Math., 50, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | Zbl | MR | Zbl