`Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 58-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formally selfadjoint system of second-order differential equations is considered in a three-dimensional domain on small parts of whose boundary an analogue of Steklov spectral conditions is set, while the Neumann boundary conditions are set on the rest of the boundary. Under certain algebraic and geometric conditions an asymptotic expression for the eigenvalues of this problem is presented and a limiting problem is put together, which produces the leading asymptotic terms and involves systems of integro-differential equations in half-spaces, interconnected by means of certain integral characteristics of vector-valued eigenfunctions. One example of a concrete problem in mathematical physics describes surface waves in several ice holes made in the ice cover of a water basin, and the asymptotic formula for eigenfrequencies shows that the local wave processes interact independently of the distance between the holes. Another series of applied problems relates to elastic fixings of bodies along small pieces of their surfaces. Possible generalizations are discussed; a number of related open questions are stated. Bibliography: 41 titles.
Keywords: second-order elliptic system of equations, Neumann and Steklov boundary conditions, asymptotic behaviour of eigenvalues, far interaction.
Mots-clés : singular perturbations
@article{SM_2023_214_1_a3,
     author = {S. A. Nazarov},
     title = {`Far interaction' of small spectral perturbations of the {Neumann} boundary conditions for an elliptic system of differential equations in a~three-dimensional domain},
     journal = {Sbornik. Mathematics},
     pages = {58--107},
     year = {2023},
     volume = {214},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - `Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 58
EP  - 107
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/
LA  - en
ID  - SM_2023_214_1_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T `Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain
%J Sbornik. Mathematics
%D 2023
%P 58-107
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/
%G en
%F SM_2023_214_1_a3
S. A. Nazarov. `Far interaction' of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 58-107. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a3/

[1] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Nauka, Moscow, 1973, 407 pp. ; English transl., Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | MR | Zbl | DOI | MR | Zbl

[2] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | Zbl

[3] M. Sh. Birman and M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Leningrad University Publishing House, Leningrad, 1980, 264 pp. ; English transl., Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl | MR

[4] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Éd., Prague, 1967, 351 pp. | MR | Zbl

[5] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, Problemy Mat. Anal., 16, St Petersburg University Publishing House, St Petersburg, 1997, 167–192 ; English transl. in J. Math. Sci. (N.Y.), 92:6 (1998), 4338–4353 | Zbl | DOI | MR

[6] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Uspekhi Mat. Nauk, 54:5(329) (1999), 77–142 ; English transl. in Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl | DOI

[7] J. J. Stoker, Water waves. The mathematical theory with applications, Wiley Classics Lib., Reprint of the 1957 original, John Wiley Sons, Inc., New York, 1992, xxvi+567 pp. | DOI | MR | Zbl

[8] N. Kuznetsov, V. Maz'ya and B. Vainberg, Linear water waves. A mathematical approach, Cambridge Univ. Press, Cambridge, 2002, xviii+513 pp. | DOI | MR | Zbl

[9] S. A. Nazarov, Asymptotic theory of thin plates and rods. Dimension reduction and integral bounds, Nauchnaya Kniga, Novosibirsk, 2002, 408 pp. (Russian)

[10] S. Langer, S. A. Nazarov and M. Shpekovius-Noĭgebauer, “Affine transforms of three-dimensional anisotropic media and explicit formulas for fundamental matrices”, Prikl. Mekh. Tekhn. Fiz., 47:2 (2006), 95–102 ; English transl. in J. Appl. Mech. Tech. Phys., 47:2 (2006), 229–235 | MR | Zbl | DOI

[11] D. Gómez, S. A. Nazarov and E. Pérez, “Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2 (2018), 35, 23 pp. | DOI | MR | Zbl

[12] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Uspekhi Mat. Nauk, 63:1(379) (2008), 37–110 ; English transl. in Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | MR | Zbl | DOI

[13] E. Pérez, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883 | DOI | MR | Zbl

[14] S. A. Nazarov, “Asymptotics of the solution of the Steklov spectral problem in a domain with a blunted peak”, Mat. Zametki, 86:4 (2009), 571–587 ; English transl. in Math. Notes, 86:4 (2009), 542–555 | DOI | MR | Zbl | DOI

[15] G. Cardone, T. Durante and S. A. Nazarov, “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004 | DOI | MR | Zbl

[16] S. A. Nazarov, “Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions”, Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 2033–2049 ; English transl. in Comput. Math. Math. Phys., 52:11 (2012), 1574–1589 | MR | Zbl | DOI

[17] S. A. Nazarov, “Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains”, Algebra i Analiz, 26:2 (2014), 119–184 ; English transl. in St. Petersburg Math. J., 26:2 (2015), 273–318 | MR | Zbl | DOI

[18] S. Gryshchuk and M. Lanza de Cristoforis, “Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Math. Methods Appl. Sci., 37:12 (2014), 1755–1771 | DOI | MR | Zbl

[19] S. A. Nazarov, “Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems”, Funktsional. Anal. Prilozhen., 49:1 (2015), 31–48 ; English transl. in Funct. Anal. Appl., 49:1 (2015), 25–39 | DOI | MR | Zbl | DOI

[20] Y. Amirat, O. Bodart, G. A. Chechkin and A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671 | DOI | MR | Zbl

[21] A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Ross. Akad. Nauk Ser. Mat., 81:1 (2017), 203–240 ; English transl. in Izv. Math., 81:1 (2017), 199–236 | DOI | MR | Zbl | DOI

[22] R. R. Gadyl'shin, A. L. Piatnitskii and G. A. Chechkin, “On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type”, Izv. Ross. Akad. Nauk Ser. Mat., 82:6 (2018), 37–64 ; English transl. in Izv. Math., 82:6 (2018), 1108–1135 | DOI | MR | Zbl | DOI

[23] S. A. Nazarov and J. Taskinen, ““Blinking eigenvalues” of the Steklov problem generate the continuous spectrum in a cuspidal domain”, J. Differential Equations, 269:4 (2020), 2774–2797 | DOI | MR | Zbl

[24] M. Lanza de Cristoforis, “Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Asymptot. Anal., 121:3–4 (2021), 335–365 | DOI | MR | Zbl

[25] V. Chiadò Piat and S. A. Nazarov, “Steklov spectral problems in a set with a thin toroidal hole”, Partial Differential Equations in Applied Mathematics, 1 (2020), 100007, 13 pp. | DOI

[26] V. Chiadò Piat and S. A. Nazarov, “Mixed boundary value problems in singularly perturbed two-dimensional domains with the Steklov spectral condition”, Problemy Mat. Anal., 106, Tamara Rozhkovskaya, Novosibirsk, 2020, 91–124 ; English transl. in J. Math. Sci. (N.Y.), 251:5 (2020), 655–695 | MR | Zbl | DOI

[27] A. G. Chechkina, “On the behavior of the spectrum of a perturbed Steklov boundary value problem with a weak singularity”, Differ. Uravn., 57:10 (2021), 1407–1420 ; English transl. in Differ. Equ., 57:10 (2021), 1382–1395 | MR | Zbl | DOI

[28] D. Gómez, S. A. Nazarov and M.-E. Pérez-Martínez, “Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation”, J. Elasticity, 142:1 (2020), 89–120 | DOI | MR | Zbl

[29] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Modél. Math. Anal. Numér., 27:6 (1993), 777–799 | DOI | MR | Zbl

[30] S. A. Nazarov, “A Sanchez-Palencia problem with Neumann boundary conditions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 11, 60–66 ; English transl. in Soviet Math. (Iz. VUZ), 33:11 (1989), 73–78 | MR | Zbl

[31] J. Caínzos, E. Pérez and M. Vilasánchez, “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987 | DOI | MR | Zbl

[32] D. Gómez, S. A. Nazarov and M.-E. Pérez, “Formal asymptotics of eigenmodes for oscillating elastic spatial bodies with concentrated masses”, Mathematical questions in wave propagation theory. 36, Zap. Nauchn. Semin. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 342, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2007, 31–76 ; English transl. in J. Math. Sci. (N.Y.), 148:5 (2008), 650–674 | MR | Zbl | DOI

[33] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Tr. Mosk. Mat. Obshch., 16, Moscow University Publishing House, Moscow, 1967, 209–292 ; English transl. in Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl

[34] S. A. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991, 336 pp.; English transl., de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[35] V. G. Maz'ya and B. A. Plamenevskiĭ, “On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points”, Math. Nachr., 76 (1977), 29–60 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 57–88 | DOI | MR | Zbl | DOI

[36] V. G. Maz'ya and B. A. Plamenevskiĭ, “Estimates in $L_p$ and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary”, Math. Nachr., 81:1 (1978), 25–82 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 1–56 | DOI | MR | Zbl | DOI

[37] M. I. Višik (Vishik) and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk, 12:5(77) (1957), 3–122 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | MR | Zbl | DOI | MR | Zbl

[38] V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp. ; v. II, Oper. Theory Adv. Appl., 112, xxiv+323 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[39] Yu. N. Rabotnov, Mechanics of a deformed rigid body, 2nd ed., Nauka, Moscow, 1988, 712 pp. (Russian) | Zbl

[40] Ya. S. Uflyand, Integral transformations in elasticity problems, 2nd augmented ed., Nauka, Leningrad, 1967, 420 pp. (Russian) | MR

[41] S. G. Mikhlin, Variational methods in mathematical physics, 2nd revised and augmented ed., Nauka, Moscow, 1970, 512 pp. ; English transl. of 1st ed., Internat. Ser. Monogr. Pure Appl. Math., 50, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | Zbl | MR | Zbl