Structure of the spectrum of a~nonselfadjoint Dirac operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 39-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the Dirac operator with two-point boundary conditions and an arbitrary complex-valued $L_2$-integrable potential $V(x)$ the spectral problem is considered. Necessary and sufficient conditions on an entire function to be the characteristic function of such a boundary value problem are obtained. Necessary and sufficient conditions on the spectrum of the above operator are established in the case when the boundary conditions are regular. 
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Dirac operator, characteristic function, spectrum.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_1_a2,
     author = {A. S. Makin},
     title = {Structure of the spectrum of a~nonselfadjoint {Dirac} operator},
     journal = {Sbornik. Mathematics},
     pages = {39--57},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a2/}
}
                      
                      
                    A. S. Makin. Structure of the spectrum of a~nonselfadjoint Dirac operator. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 39-57. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a2/
