Structure of the spectrum of a~nonselfadjoint Dirac operator
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 39-57

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Dirac operator with two-point boundary conditions and an arbitrary complex-valued $L_2$-integrable potential $V(x)$ the spectral problem is considered. Necessary and sufficient conditions on an entire function to be the characteristic function of such a boundary value problem are obtained. Necessary and sufficient conditions on the spectrum of the above operator are established in the case when the boundary conditions are regular. Bibliography: 16 titles.
Keywords: Dirac operator, characteristic function, spectrum.
@article{SM_2023_214_1_a2,
     author = {A. S. Makin},
     title = {Structure of the spectrum of a~nonselfadjoint {Dirac} operator},
     journal = {Sbornik. Mathematics},
     pages = {39--57},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a2/}
}
TY  - JOUR
AU  - A. S. Makin
TI  - Structure of the spectrum of a~nonselfadjoint Dirac operator
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 39
EP  - 57
VL  - 214
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a2/
LA  - en
ID  - SM_2023_214_1_a2
ER  - 
%0 Journal Article
%A A. S. Makin
%T Structure of the spectrum of a~nonselfadjoint Dirac operator
%J Sbornik. Mathematics
%D 2023
%P 39-57
%V 214
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_1_a2/
%G en
%F SM_2023_214_1_a2
A. S. Makin. Structure of the spectrum of a~nonselfadjoint Dirac operator. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 39-57. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a2/