Jordan property for groups of bimeromorphic automorphisms of compact K\"ahler threefolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 28-38
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be a nonuniruled compact Kähler space of dimension $3$. We show that the group of bimeromorphic automorphisms of $X$ is Jordan. More generally, the same result holds for any compact Kähler space admitting a quasi-minimal model.
Bibliography: 29 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Kähler manifold, minimal model, Jordan property.
Mots-clés : bimeromorphic map
                    
                  
                
                
                Mots-clés : bimeromorphic map
@article{SM_2023_214_1_a1,
     author = {A. S. Golota},
     title = {Jordan property for groups of bimeromorphic automorphisms of compact {K\"ahler} threefolds},
     journal = {Sbornik. Mathematics},
     pages = {28--38},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a1/}
}
                      
                      
                    A. S. Golota. Jordan property for groups of bimeromorphic automorphisms of compact K\"ahler threefolds. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a1/
