Jordan property for groups of bimeromorphic automorphisms of compact K\"ahler threefolds
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 28-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a nonuniruled compact Kähler space of dimension $3$. We show that the group of bimeromorphic automorphisms of $X$ is Jordan. More generally, the same result holds for any compact Kähler space admitting a quasi-minimal model. Bibliography: 29 titles.
Keywords: Kähler manifold, minimal model, Jordan property.
Mots-clés : bimeromorphic map
@article{SM_2023_214_1_a1,
     author = {A. S. Golota},
     title = {Jordan property for groups of bimeromorphic automorphisms of compact {K\"ahler} threefolds},
     journal = {Sbornik. Mathematics},
     pages = {28--38},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a1/}
}
TY  - JOUR
AU  - A. S. Golota
TI  - Jordan property for groups of bimeromorphic automorphisms of compact K\"ahler threefolds
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 28
EP  - 38
VL  - 214
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a1/
LA  - en
ID  - SM_2023_214_1_a1
ER  - 
%0 Journal Article
%A A. S. Golota
%T Jordan property for groups of bimeromorphic automorphisms of compact K\"ahler threefolds
%J Sbornik. Mathematics
%D 2023
%P 28-38
%V 214
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_1_a1/
%G en
%F SM_2023_214_1_a1
A. S. Golota. Jordan property for groups of bimeromorphic automorphisms of compact K\"ahler threefolds. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a1/