Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 1-27
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for the proof of analogues of the classical Bernstein, Riesz and Boas inequalities for differentiation and difference operators defined by means of multipliers in terms of the Fourier-Dunkl transform is developed. This method is based on Civin-type interpolation formulae. Some of the inequalities obtained are sharp in the uniform norm.
Bibliography: 42 titles.
Keywords:
Bernstein, Riesz, and Boas inequalities, Dunkl operator
Mots-clés : sharp constant.
Mots-clés : sharp constant.
@article{SM_2023_214_1_a0,
author = {O. L. Vinogradov},
title = {Sharp {Bernstein-type} inequalities for {Fourier-Dunkl} multipliers},
journal = {Sbornik. Mathematics},
pages = {1--27},
publisher = {mathdoc},
volume = {214},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/}
}
O. L. Vinogradov. Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/