Mots-clés : sharp constant.
@article{SM_2023_214_1_a0,
author = {O. L. Vinogradov},
title = {Sharp {Bernstein-type} inequalities for {Fourier-Dunkl} multipliers},
journal = {Sbornik. Mathematics},
pages = {1--27},
year = {2023},
volume = {214},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/}
}
O. L. Vinogradov. Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/
[1] N. I. Akhiezer, Lectures on approximation theory, 2nd ed, Nauka, Moscow, 1965, 407 pp. (Russian) ; German transl., N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2nd revised ed., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | Zbl | MR | Zbl
[2] A. F. Timan, Theory of approximation of functions of a real variable, Fizmatgiz, Moscow, 1960, 624 pp. ; English transl., Internat. Ser. Monogr. Pure Appl. Math., 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl
[3] S. N. Bernstein, “Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné”, Mem. Acad. Roy. Belgique, 2e série, 4 (1912), 3–104 | Zbl
[4] S. N. Bernstain, “Sur une propriété des fonctions entières”, C. R. Acad. Sci., Paris, 176 (1923), 1603–1605 | Zbl
[5] M. Riesz, “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresber. Deutsch. Math.-Ver., 23 (1914), 354–368 | Zbl
[6] S. N. Bernstain, “Extending an inequality of S. B. Stechkin to entire function of finite degree”, Collected papers, v. 2, USSR Academy of Sciences Publishing House, Moscow, 1954, 442–445 (Russian) | MR | Zbl
[7] S. M. Nikol'skii, “A generalization of an inequality of S. N. Bernstein”, Selected papers, v. 1, Nauka, Moscow, 2006, 243–246 (Russian)
[8] S. B. Stechkin, “A generalization of several inequalities of S. N. Bernstein”, Selected papers: mathematics, Nauka. Fizmatlit, Moscow, 1998, 15–18 (Russian) | MR | Zbl
[9] R. P. Boas (Jr.), “Quelques généralisations d'un théorème de S. Bernstein sur la dérivée d'un polynome trigonométrique”, C. R. Acad. Sci. Paris, 227 (1948), 618–619 | MR | Zbl
[10] P. Civin, “Inequalities for trigonometric integrals”, Duke Math. J., 8:4 (1941), 656–665 | DOI | MR | Zbl
[11] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, 2nd ed., Nauka, Moscow, 1977, 455 pp. ; English transl. of 1st ed., Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | Zbl | DOI | MR | Zbl
[12] O. L. Vinogradov and V. V. Zhuk, “Sharp estimates for errors of numerical differentiation type formulas on trigonometric polynomials”, Probl. Mat. Anal., 21, Tamara Rozhkovskaya, Novosibirsk, 2000, 68–109; English transl. in J. Math. Sci. (N.Y.), 105:5 (2001), 2347–2376 | DOI | MR | Zbl
[13] O. L. Vinogradov, “Sharp error estimates for the numerical differentiation formulas on the classes of entire functions of exponential type”, Sibirsk. Mat. Zh., 48:3 (2007), 538–555 ; English transl. in Siberian Math. J., 48:3 (2007), 430–445 | MR | Zbl | DOI
[14] D. V. Gorbachev and V. I. Ivanov, “Nikol'skii-Bernstein constants for entire functions of exponential spherical type in weighted spaces”, Tr. Inst. Mat. Mekh., 25, no. 2, 2019, 75–87 ; English transl. in Proc. Steklov Inst. Math., 309, suppl. 1 (2020), S24–S35 | DOI | MR | DOI
[15] D. V. Gorbachev, V. I. Ivanov and S. Yu. Tikhonov, “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl
[16] D. V. Gorbachev and V. I. Ivanov, “Fractional smoothness in $L^p$ with Dunkl weight and its applications”, Math. Notes, 106:4 (2019), 537–561 | DOI | MR | Zbl
[17] I. P. Li, C. M. Su and V. I. Ivanov, “Some problems of approximation theory in the spaces $L_p$ on the line with power weight”, Mat. Zametki, 90:3 (2011), 362–383 ; English transl. in Math. Notes, 90:3 (2011), 344–364 | DOI | MR | Zbl | DOI
[18] A. I. Kamzolov, “On Riesz's interpolational formula and Bernshtein's inequality for functions on homogeneous spaces”, Mat. Zametki, 15:6 (1974), 967–978 ; English transl. in Math. Notes, 15:6 (1974), 576–582 | MR | Zbl | DOI
[19] S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Ross. Akad. Nauk Ser. Mat., 71:5 (2007), 149–196 ; English transl. in Izv. Math., 71:5 (2007), 1001–1048 | DOI | MR | Zbl | DOI
[20] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[21] K. Trimèche, Generalized harmonic analysis and wavelet packets, CRC Press, London, 2001, xii+306 pp. | DOI | MR | Zbl
[22] M. A. Mourou, “Transmutation operators associated with a Dunkl type differential-difference operator on the real line and certain of their applications”, Integral Transform. Spec. Funct., 12:1 (2001), 77–88 | DOI | MR | Zbl
[23] M. F. E. de Jeu, “The Dunkl transform”, Invent. Math., 113:1 (1993), 147–162 | DOI | MR | Zbl
[24] M. Rösler, “Bessel-type signed hypergroups on $\mathbb R$”, Probability measures on groups and related structures. XI (Oberwolfach 1994), World Sci. Publ., River Edge, NJ, 1995, 292–304 | MR | Zbl
[25] M. A. Mourou and K. Trimèche, “Transmutation operators and Paley-Wiener theorem associated with a singular differential-difference operator on the real line”, Anal. Appl. (Singap.), 1:1 (2003), 43–70 | DOI | MR | Zbl
[26] O. L. Vinogradov, “On the norms of generalized translation operators generated by Dunkl type operators”, Analytic number theory and theory of functions. 26, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 392, St. Petersburg Department of Steklov Mathematics Institute, St. Petersburg, 2011, 5–31 ; English transl. in J. Math. Sci. (N.Y.), 184:6 (2012), 663–678 | MR | Zbl | DOI
[27] M. A. Mourou and Trimèche, “Calderon's reproducing formula related to the Dunkl operator on the real line”, Monatsh. Math., 136:1 (2002), 47–65 | DOI | MR | Zbl
[28] M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR | Zbl
[29] H. B. Mohamed and K. Trimèche, “Dunkl transform on $\mathbb R$ and convolution product on new spaces of distributions”, Integral Transforms Spec. Funct., 14:5 (2003), 437–458 | DOI | MR | Zbl
[30] D. V. Chertova, “Jackson theorems in $L_2(\mathbb R)$ with power weight”, Izv. Tul'sk. Gos. Univ. Estestv. Nauki, 2009, no. 3, 100–116 (Russian)
[31] S. N. Bernstein, “Génération et généralisation des fonctions analytiques d'une variable réele”, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, professees a la Sorbonne, Gauthier Villars et Cie, Paris, 1926, 208 pp. | Zbl
[32] F. W. Steutel and K. van Harn, Infinite divisibility of probability distributions on the real line, Monogr. Textbooks Pure Appl. Math., 259, Marcel Dekker, Inc., New York, 2004, xii+546 pp. | DOI | MR | Zbl
[33] O. L. Vinogradov, “Logarithmically absolutely monotone trigonometric functions”, Studies on linear operators and function theory. 49, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 503, St. Petersburg Department of Steklov. Math. Inst., St. Petersburg, 2021, 57–71 ; English transl. in J. Math. Sci. (N.Y.), 268:6 (2022), 773–782 | MR | DOI
[34] G. N. Watson, A treatise on the theory of Bessel functions, Chs. I–XIX, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, 1–664 | MR | Zbl
[35] B. M. Levitan, “Expansion in Fourier series and integrals with Bessel functions”, Uspekhi Mat. Nauk, 6:2(42) (1951), 102–143 (Russian) | MR | Zbl
[36] C. F. Dunkl, “Integral kernels with reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl
[37] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. ; English transl., Gordon and Breach Science Publishers, Yverdon, 1993, xxxvi+976 pp. | MR | Zbl | MR | Zbl
[38] I. A. Kipriyanov, Singular elliptic boundary value problems, Nauka, Moscow, 1997, 204 pp. (Russian) | MR | Zbl
[39] D. V. Gorbachev, “Nikol'skii-Bernstein constants for exponential type nonnegative entire functions on the axis.”, Tr. Inst. Mat. Mekh., 24, no. 4, 2018, 92–103 (Russian) | DOI | MR
[40] A. I. Stepanets, Methods of approximation theory, v. I, II, Pr. Inst. Mat. Nats. Akad. Nauk Ukr., 40, Natsional'na Akademiya Nauk Ukraini, Institut Matematiki, Kiev, 2002, 427 pp., 468 pp. ; English transl., VSP, Leiden, 2005, xviii+919 pp. | MR | MR | Zbl | DOI | MR | Zbl
[41] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | Zbl
[42] A. I. Kozko, “The exact constants in the Bernstein-Zygmund-Szegö inequalities with fractional derivatives and the Jackson-Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl