Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 1-27

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the proof of analogues of the classical Bernstein, Riesz and Boas inequalities for differentiation and difference operators defined by means of multipliers in terms of the Fourier-Dunkl transform is developed. This method is based on Civin-type interpolation formulae. Some of the inequalities obtained are sharp in the uniform norm. Bibliography: 42 titles.
Keywords: Bernstein, Riesz, and Boas inequalities, Dunkl operator
Mots-clés : sharp constant.
@article{SM_2023_214_1_a0,
     author = {O. L. Vinogradov},
     title = {Sharp {Bernstein-type} inequalities for {Fourier-Dunkl} multipliers},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1
EP  - 27
VL  - 214
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/
LA  - en
ID  - SM_2023_214_1_a0
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers
%J Sbornik. Mathematics
%D 2023
%P 1-27
%V 214
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/
%G en
%F SM_2023_214_1_a0
O. L. Vinogradov. Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a0/