Infinite elliptic hypergeometric series: convergence and difference equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1751-1778
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We derive finite difference equations of infinite order for theta-hypergeometric series and investigate the space of their solutions. In general, such infinite series diverge, and we describe some constraints on the parameters when they do converge. In particular, we lift the Hardy-Littlewood criterion of the convergence of $q$-hypergeometric series for ${|q|=1}$, $q^n\neq 1$, to the elliptic level and prove the convergence of infinite very-well poised elliptic hypergeometric ${}_{r+1}V_r$-series for restricted values of $q$.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
elliptic hypergeometric series, finite difference equations, Padé approximation.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_12_a4,
     author = {D. I. Krotkov and V. P. Spiridonov},
     title = {Infinite elliptic hypergeometric series: convergence and difference equations},
     journal = {Sbornik. Mathematics},
     pages = {1751--1778},
     publisher = {mathdoc},
     volume = {214},
     number = {12},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/}
}
                      
                      
                    TY - JOUR AU - D. I. Krotkov AU - V. P. Spiridonov TI - Infinite elliptic hypergeometric series: convergence and difference equations JO - Sbornik. Mathematics PY - 2023 SP - 1751 EP - 1778 VL - 214 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/ LA - en ID - SM_2023_214_12_a4 ER -
D. I. Krotkov; V. P. Spiridonov. Infinite elliptic hypergeometric series: convergence and difference equations. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1751-1778. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/
