Mots-clés : Padé approximation.
@article{SM_2023_214_12_a4,
author = {D. I. Krotkov and V. P. Spiridonov},
title = {Infinite elliptic hypergeometric series: convergence and difference equations},
journal = {Sbornik. Mathematics},
pages = {1751--1778},
year = {2023},
volume = {214},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/}
}
D. I. Krotkov; V. P. Spiridonov. Infinite elliptic hypergeometric series: convergence and difference equations. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1751-1778. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/
[1] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl
[2] I. B. Frenkel and V. G. Turaev, “Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions”, The Arnold-Gelfand mathematical seminars, Birkhäuser Boston, Inc., Boston, MA, 1997, 171–204 | DOI | MR | Zbl
[3] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia Math. Appl., 96, 2nd ed., Cambridge Univ. Press, Cambridge, 2004, xxvi+428 pp. | DOI | MR | Zbl
[4] S. Grepstad, L. Kaltenböck and M. Neumüller, “A positive lower bound for $\lim \inf_{N\to\infty}\prod_{r=1}^{N} |2\sin \pi r\varphi|$”, Proc. Amer. Math. Soc., 147:11 (2019), 4863–4876 | DOI | MR | Zbl
[5] G. H. Hardy and J. E. Littlewood, “Notes on the theory of series (XXIV): a curious power-series”, Proc. Cambridge Philos. Soc., 42:2 (1946), 85–90 | DOI | MR | Zbl
[6] D. S. Lubinsky, “The size of $(q; q)_n$ for $q$ on the unit circle”, J. Number Theory, 76:2 (1999), 217–247 | DOI | MR | Zbl
[7] G. Petruska, “On the radius of convergence of $q$-series”, Indag. Math. (N.S.), 3:3 (1992), 353–364 | DOI | MR | Zbl
[8] V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 307–327 | DOI | MR | Zbl
[9] V. P. Spiridonov, “An elliptic incarnation of the Bailey chain”, Int. Math. Res. Not. IMRN, 2002:37 (2002), 1945–1977 | DOI | MR | Zbl
[10] V. P. Spiridonov, “Theta hypergeometric integrals”, St. Petersburg Math. J., 15:6 (2004), 929–967 | DOI | MR | Zbl
[11] V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63:3 (2008), 405–472 | DOI | DOI | MR | Zbl
[12] A. Zhedanov, “Elliptic polynomials orthogonal on the unit circle with a dense point spectrum”, Ramanujan J., 19:3 (2009), 351–384 | DOI | MR | Zbl
[13] A. Zhedanov, “Umbral “classical” polynomials”, J. Math. Anal. Appl., 420:2 (2014), 1354–1375 | DOI | MR | Zbl