Infinite elliptic hypergeometric series: convergence and difference equations
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1751-1778 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive finite difference equations of infinite order for theta-hypergeometric series and investigate the space of their solutions. In general, such infinite series diverge, and we describe some constraints on the parameters when they do converge. In particular, we lift the Hardy-Littlewood criterion of the convergence of $q$-hypergeometric series for ${|q|=1}$, $q^n\neq 1$, to the elliptic level and prove the convergence of infinite very-well poised elliptic hypergeometric ${}_{r+1}V_r$-series for restricted values of $q$. Bibliography: 13 titles.
Keywords: elliptic hypergeometric series, finite difference equations
Mots-clés : Padé approximation.
@article{SM_2023_214_12_a4,
     author = {D. I. Krotkov and V. P. Spiridonov},
     title = {Infinite elliptic hypergeometric series: convergence and difference equations},
     journal = {Sbornik. Mathematics},
     pages = {1751--1778},
     year = {2023},
     volume = {214},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/}
}
TY  - JOUR
AU  - D. I. Krotkov
AU  - V. P. Spiridonov
TI  - Infinite elliptic hypergeometric series: convergence and difference equations
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1751
EP  - 1778
VL  - 214
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/
LA  - en
ID  - SM_2023_214_12_a4
ER  - 
%0 Journal Article
%A D. I. Krotkov
%A V. P. Spiridonov
%T Infinite elliptic hypergeometric series: convergence and difference equations
%J Sbornik. Mathematics
%D 2023
%P 1751-1778
%V 214
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/
%G en
%F SM_2023_214_12_a4
D. I. Krotkov; V. P. Spiridonov. Infinite elliptic hypergeometric series: convergence and difference equations. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1751-1778. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a4/

[1] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl

[2] I. B. Frenkel and V. G. Turaev, “Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions”, The Arnold-Gelfand mathematical seminars, Birkhäuser Boston, Inc., Boston, MA, 1997, 171–204 | DOI | MR | Zbl

[3] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia Math. Appl., 96, 2nd ed., Cambridge Univ. Press, Cambridge, 2004, xxvi+428 pp. | DOI | MR | Zbl

[4] S. Grepstad, L. Kaltenböck and M. Neumüller, “A positive lower bound for $\lim \inf_{N\to\infty}\prod_{r=1}^{N} |2\sin \pi r\varphi|$”, Proc. Amer. Math. Soc., 147:11 (2019), 4863–4876 | DOI | MR | Zbl

[5] G. H. Hardy and J. E. Littlewood, “Notes on the theory of series (XXIV): a curious power-series”, Proc. Cambridge Philos. Soc., 42:2 (1946), 85–90 | DOI | MR | Zbl

[6] D. S. Lubinsky, “The size of $(q; q)_n$ for $q$ on the unit circle”, J. Number Theory, 76:2 (1999), 217–247 | DOI | MR | Zbl

[7] G. Petruska, “On the radius of convergence of $q$-series”, Indag. Math. (N.S.), 3:3 (1992), 353–364 | DOI | MR | Zbl

[8] V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 307–327 | DOI | MR | Zbl

[9] V. P. Spiridonov, “An elliptic incarnation of the Bailey chain”, Int. Math. Res. Not. IMRN, 2002:37 (2002), 1945–1977 | DOI | MR | Zbl

[10] V. P. Spiridonov, “Theta hypergeometric integrals”, St. Petersburg Math. J., 15:6 (2004), 929–967 | DOI | MR | Zbl

[11] V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63:3 (2008), 405–472 | DOI | DOI | MR | Zbl

[12] A. Zhedanov, “Elliptic polynomials orthogonal on the unit circle with a dense point spectrum”, Ramanujan J., 19:3 (2009), 351–384 | DOI | MR | Zbl

[13] A. Zhedanov, “Umbral “classical” polynomials”, J. Math. Anal. Appl., 420:2 (2014), 1354–1375 | DOI | MR | Zbl