On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1721-1750 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)$ assuming that the magnetic flux of the homogeneous magnetic field $B>0$ satisfies the condition $(2\pi)^{-1}Bv(K)=Q^{-1}$, $Q\in \mathbb N $, where $v(K)$ is the area of the unit cell $K$ of the period lattice of the potential $V$. For arbitrary periodic potentials $V\in L^2_{\mathrm {loc}}(\mathbb R^2;\mathbb R)$ with zero mean $V_0=0$ we show that the spectrum has no eigenvalues different from Landau levels. For periodic potentials $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)\setminus C^{\infty}(\mathbb R^2;\mathbb R)$ we also show that the spectrum is absolutely continuous. Bibliography: 23 titles.
Keywords: Landau Hamiltonian, periodic electric potential, spectrum, homogeneous magnetic field.
@article{SM_2023_214_12_a3,
     author = {L. I. Danilov},
     title = {On the spectrum of the {Landau} {Hamiltonian} perturbed by a~periodic electric potential},
     journal = {Sbornik. Mathematics},
     pages = {1721--1750},
     year = {2023},
     volume = {214},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a3/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1721
EP  - 1750
VL  - 214
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a3/
LA  - en
ID  - SM_2023_214_12_a3
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential
%J Sbornik. Mathematics
%D 2023
%P 1721-1750
%V 214
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a3/
%G en
%F SM_2023_214_12_a3
L. I. Danilov. On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1721-1750. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a3/

[1] M. Sh. Birman and T. A. Suslina, “Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR | Zbl

[2] L. I. Danilov, “The spectrum of the two-dimensional periodic Schrödinger operator”, Theoret. and Math. Phys., 134:3 (2003), 392–403 | DOI | MR | Zbl

[3] R. G. Shterenberg, “Absolute continuity of the spectrum of the two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Proceedings of the St. Petersburg Mathematical Society, v. IX, Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc., Providence, RI, 2003, 191–221 | DOI | MR | Zbl

[4] R. G. Shterenberg, “Absolute continuity of spectra of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potentials”, J. Math. Sci. (N.Y.), 129:4 (2005), 4087–4109 | DOI | MR | Zbl

[5] L. I. Danilov, “The absence of eigenvalues in the spectrum of two-dimensional periodic Dirac and Schrödinger operators”, Izv. Inst. Mat. Inform., 2004, no. 1(29), 49–84 (Russian)

[6] M. Sh. Birman and T. A. Suslina, “Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity”, St. Petersburg Math. J., 11:2 (2000), 203–232 | MR | Zbl

[7] P. Kuchment and S. Levendorskiî, “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[8] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc. (N.S.), 53:3 (2016), 343–414 | DOI | MR | Zbl

[9] L. I. Danilov, “Absolute continuity of the spectrum of a periodic 3D magnetic Schrödinger operator with singular electric potential”, Math. Notes, 110:4 (2021), 497–510 | DOI | MR | Zbl

[10] L. I. Danilov, “On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential”, Izv. Inst. Mat. Inform., 58 (2021), 18–47 (Russian) | DOI | MR | Zbl

[11] V. A. Geiler, V. A. Margulis and I. I. Chuchaev, “Spectrum structure for the three-dimensional periodic Landau operator”, St. Petersburg Math. J., 8:3 (1997), 447–461 | MR | Zbl

[12] N. D. Filonov and A. V. Sobolev, “On the spectrum of an “even” periodic Schrödinger operator with a rational magnetic flux”, J. Spectr. Theory, 5:2 (2015), 381–398 | DOI | MR | Zbl

[13] V. A. Geĭler, “The two-dimensional Schrödinger operator with a uniform magnetic field, and its perturbation by periodic zero-range potentials”, St. Petersburg Math. J., 3:3 (1992), 489–532 | MR | Zbl

[14] H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., Springer Study Ed., Springer-Verlag, Berlin, 1987, x+319 pp. | DOI | MR | Zbl

[15] F. Klopp, “Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential”, Math. Ann., 347:3 (2010), 675–687 | DOI | MR | Zbl

[16] M. Reed and B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl

[17] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[18] N. Filonov and A. V. Sobolev ; “Absence of the singular continuous component in spectra of analytic direct integrals”, J. Math. Sci. (N.Y.), 136:2 (2006), 3826–3831 | MR | Zbl | DOI

[19] S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, J. Soviet Math., 28:1 (1985), 1–20 | DOI | MR | Zbl

[20] L. I. Danilov, “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoret. and Math. Phys., 202:1 (2020), 41–57 | DOI | MR | Zbl

[21] L. I. Danilov, “On the spectrum of a Landau Hamiltonian with periodic electric potential $V\in L^p_{\mathrm{loc}}({\mathbb R}^2)$, $p>1$”, Izv. Inst. Mat. Inform., 55 (2020), 42–59 (Russian) | DOI | MR | Zbl

[22] L. I. Danilov, “On the spectrum of the two-dimensional Schrodinger operator with a homogeneous magnetic field and periodic electric potential”, Izv. Inst. Mat. Inform., 51 (2018), 3–41 (Russian) | DOI | MR | Zbl

[23] M. Reed and B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1975, xv+361 pp. | MR | Zbl