The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1694-1720
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The complex Grassmann manifolds $G_{n,k}$ appear as one of the fundamental objects in developing an interaction between algebraic geometry and algebraic topology. The case $k=2$ is of special interest on its own as the manifolds $G_{n,2}$ have several remarkable properties which distinguish them from the $G_{n,k}$ for $k>2$.
In our paper we obtain results which, essentially using the specifics of the Grassmann manifolds $G_{n,2}$, develop connections between algebraic geometry and equivariant topology. They are related to well-known problems of the canonical action
of the algebraic torus $(\mathbb{C}^{\ast})^n$ on $G_{n,2}$ and the induced action of the compact torus $T^n\subset(\mathbb{C}^{\ast})^n$.
Kapranov proved that the Deligne-Mumford-Grothendieck-Knudsen compactification $\overline{\mathcal{M}}(0,n)$ of the space of $n$-pointed rational stable curves can be realized as the Chow quotient $G_{n,2}/\!/(\mathbb{C}^{\ast})^{n}$. In recent papers of the authors a constructive description of the orbit space $G_{n,2}/T^n$ was obtained. In deducing this result the notions of the complex of admissible polytopes and the universal space of parameters $\mathcal{F}_{n}$ for the $T^n$-action on $G_{n,2}$ were of essential use.
Using the techniques of wonderful compactification, in this paper an explicit construction of the space $\mathcal{F}_{n}$ is presented. In combination with Keel's description of $\overline{\mathcal{M}}(0,n)$, this construction enabled one to obtain an explicit diffeomorphism between $\mathcal{F}_{n}$ and $\overline{\mathcal{M}}(0,n)$. In this way, we give a description of $G_{n,2}/\!/(\mathbb{C}^{\ast})^{n}$ as the space $\mathcal{F}_{n}$ with a structure described in terms of admissible polytopes $P_\sigma$ and spaces $F_\sigma$.
Bibliography: 32 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
universal space of parameters, wonderful compactification, moduli space of stable curves, Chow quotient, space of parameters of cortéges of admissible polytopes.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_12_a2,
     author = {V. M. Buchstaber and S. Terzi\'c},
     title = {The orbit spaces $G_{n,2}/T^n$ and the {Chow} quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the {Grassmann} manifolds $G_{n,2}$},
     journal = {Sbornik. Mathematics},
     pages = {1694--1720},
     publisher = {mathdoc},
     volume = {214},
     number = {12},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/}
}
                      
                      
                    TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. Terzić
TI  - The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1694
EP  - 1720
VL  - 214
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/
LA  - en
ID  - SM_2023_214_12_a2
ER  - 
                      
                      
                    %0 Journal Article
%A V. M. Buchstaber
%A S. Terzić
%T The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
%J Sbornik. Mathematics
%D 2023
%P 1694-1720
%V 214
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/
%G en
%F SM_2023_214_12_a2
                      
                      
                    V. M. Buchstaber; S. Terzić. The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1694-1720. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/
                  
                