The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1694-1720 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complex Grassmann manifolds $G_{n,k}$ appear as one of the fundamental objects in developing an interaction between algebraic geometry and algebraic topology. The case $k=2$ is of special interest on its own as the manifolds $G_{n,2}$ have several remarkable properties which distinguish them from the $G_{n,k}$ for $k>2$. In our paper we obtain results which, essentially using the specifics of the Grassmann manifolds $G_{n,2}$, develop connections between algebraic geometry and equivariant topology. They are related to well-known problems of the canonical action of the algebraic torus $(\mathbb{C}^{\ast})^n$ on $G_{n,2}$ and the induced action of the compact torus $T^n\subset(\mathbb{C}^{\ast})^n$. Kapranov proved that the Deligne-Mumford-Grothendieck-Knudsen compactification $\overline{\mathcal{M}}(0,n)$ of the space of $n$-pointed rational stable curves can be realized as the Chow quotient $G_{n,2}/\!/(\mathbb{C}^{\ast})^{n}$. In recent papers of the authors a constructive description of the orbit space $G_{n,2}/T^n$ was obtained. In deducing this result the notions of the complex of admissible polytopes and the universal space of parameters $\mathcal{F}_{n}$ for the $T^n$-action on $G_{n,2}$ were of essential use. Using the techniques of wonderful compactification, in this paper an explicit construction of the space $\mathcal{F}_{n}$ is presented. In combination with Keel's description of $\overline{\mathcal{M}}(0,n)$, this construction enabled one to obtain an explicit diffeomorphism between $\mathcal{F}_{n}$ and $\overline{\mathcal{M}}(0,n)$. In this way, we give a description of $G_{n,2}/\!/(\mathbb{C}^{\ast})^{n}$ as the space $\mathcal{F}_{n}$ with a structure described in terms of admissible polytopes $P_\sigma$ and spaces $F_\sigma$. Bibliography: 32 titles.
Keywords: universal space of parameters, wonderful compactification, moduli space of stable curves, Chow quotient
Mots-clés : space of parameters of cortéges of admissible polytopes.
@article{SM_2023_214_12_a2,
     author = {V. M. Buchstaber and S. Terzi\'c},
     title = {The orbit spaces $G_{n,2}/T^n$ and the {Chow} quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the {Grassmann} manifolds $G_{n,2}$},
     journal = {Sbornik. Mathematics},
     pages = {1694--1720},
     year = {2023},
     volume = {214},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. Terzić
TI  - The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1694
EP  - 1720
VL  - 214
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/
LA  - en
ID  - SM_2023_214_12_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. Terzić
%T The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
%J Sbornik. Mathematics
%D 2023
%P 1694-1720
%V 214
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/
%G en
%F SM_2023_214_12_a2
V. M. Buchstaber; S. Terzić. The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\pmb{\mathbb{C}}^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1694-1720. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a2/

[1] V. M. Buchstaber and S. Terzić, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl

[2] V. M. Buchstaber and S. Terzić, “Toric topology of the complex Grassmann manifolds”, Mosc. Math. J., 19:3 (2019), 397–463 | DOI | MR | Zbl

[3] V. M. Buchstaber and S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | DOI | MR | Zbl

[4] V. M. Buchstaber and A. P. Veselov, Chern-Dold character in complex cobordisms and theta divisors, arXiv: 2007.05782

[5] V. M. Buchstaber and S. Terzić, “Resolution of singularities of the orbit spaces $G_{n,2}/T^n$”, Proc. Steklov Inst. Math., 317 (2022), 21–54 | DOI | DOI | MR | Zbl

[6] T. Coates and A. Givental, “Quantum cobordisms and formal group laws”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 155–171 | DOI | MR | Zbl

[7] C. De Concini and C. Procesi, “Complete symmetric varieties”, Invariant theory (Montecatini 1982), Lecture Notes in Math., 996, Springer-Verlag, Berlin, 1983, 1–44 | DOI | MR | Zbl

[8] C. De Concini and C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494 | DOI | MR | Zbl

[9] C. De Concini and C. Procesi, “Hyperplane arrangements and holonomy equations”, Selecta Math. (N.S.), 1:3 (1995), 495–535 | DOI | MR | Zbl

[10] C. De Concini and G. Gaiffi, “Projective wonderful models for toric arrangements”, Adv. Math., 327 (2018), 390–409 | DOI | MR | Zbl

[11] C. De Concini and G. Gaiffi, “Cohomology rings of compactifications of toric arrangements”, Algebr. Geom. Topol., 19:1 (2019), 503–532 | DOI | MR | Zbl

[12] C. De Concini, G. Gaiffi and O. Papini, “On projective wonderful models for toric arrangements and their cohomology”, Eur. J. Math., 6:3 (2020), 790–816 | DOI | MR | Zbl

[13] W. Fulton and R. MacPherson, “A compactification of configuration space”, Ann. of Math. (2), 139:1 (1994), 183–225 | DOI | MR | Zbl

[14] I. M. Gelfand and R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312 | DOI | MR | Zbl

[15] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russian Math. Surveys, 42:2 (1987), 133–168 | DOI | MR | Zbl

[16] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl

[17] M. Goresky and R. MacPherson, “On the topology of algebraic torus actions”, Algebraic groups (Utrecht 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 73–90 | DOI | MR | Zbl

[18] Yi Hu, “Topological aspects of Chow quotients”, J. Differential Geom., 69:3 (2005), 399–440 | DOI | MR | Zbl

[19] M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110 | DOI | MR | Zbl

[20] M. M. Kapranov, “Veronese curves and Grothendieck-Knudsen moduli space $\overline{M}_(0,n)$”, J. Alebraic Geom., 2:2 (1993), 239–262 | MR | Zbl

[21] M. E. Kazaryan, S. K. Lando and V. V. Prasolov, Algebraic curves. Towards moduli spaces, Moscow Lectures, 2, Springer, Cham, 2018, xiv+231 pp. | DOI | MR | Zbl

[22] S. Keel, “Intersection theory of moduli space of stable $N$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | DOI | MR | Zbl

[23] S. Keel and J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311 | DOI | MR | Zbl

[24] S. Keel and J. McKernan, “Contractible extremal rays on $\overline{M}_(0,n)$”, Handbook of moduli, v. 2, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2013, 115–130 | MR | Zbl

[25] N. Klemyatin, Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$, arXiv: 1905.03047

[26] J. M. Landsberg and L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Algebra, 239:2 (2001), 477–512 | DOI | MR | Zbl

[27] Li Li, “Wonderful compactification of an arrangement of subvarieties”, Michigan Math. J., 58:2 (2009), 535–563 | DOI | MR | Zbl

[28] D. Luna and Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245 | DOI | MR | Zbl

[29] D. McDuff and D. Salamon, $J$-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004, xii+669 pp. | DOI | MR | Zbl

[30] H. Süß, “Toric topology of the Grassmannian of planes in $\mathbb{C}^{5}$ and the del Pezzo surface of degree $5$”, Mosc. Math. J., 21:3 (2021), 639–652 | DOI | MR | Zbl

[31] D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory Algebr. Transform. Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp. | DOI | MR | Zbl

[32] F. L. Zak, “Severi varieties”, Math. USSR-Sb., 54:1 (1986), 113–127 | DOI | MR | Zbl