Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1674-1693
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A number of questions concerning the behaviour of double integrals of the moduli of the derivatives of bounded $n$-valent functions and, in particular, of rational functions of fixed degree $n$ are considered. For domains with rectifiable boundaries the sharp order of growth of such integral means is found in its dependence on $n$. Upper bounds for domains with fractal boundaries are obtained, which depend on the Minkowski dimension of the boundary of the domain. In certain cases these bounds are shown to be close to sharp ones. Lower bounds in terms of the integral means spectra of conformal mappings are also found. These inequalities refine Dolzhenko's classical results (1966) and some recent results due to the authors. 
Bibliography: 32 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$n$-valent functions, integral means, fractal boundaries, Minkowski dimension, integral means spectrum.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_12_a1,
     author = {A. D. Baranov and I. R. Kayumov},
     title = {Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains},
     journal = {Sbornik. Mathematics},
     pages = {1674--1693},
     publisher = {mathdoc},
     volume = {214},
     number = {12},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/}
}
                      
                      
                    TY - JOUR AU - A. D. Baranov AU - I. R. Kayumov TI - Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains JO - Sbornik. Mathematics PY - 2023 SP - 1674 EP - 1693 VL - 214 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/ LA - en ID - SM_2023_214_12_a1 ER -
%0 Journal Article %A A. D. Baranov %A I. R. Kayumov %T Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains %J Sbornik. Mathematics %D 2023 %P 1674-1693 %V 214 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/ %G en %F SM_2023_214_12_a1
A. D. Baranov; I. R. Kayumov. Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1674-1693. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/
