@article{SM_2023_214_12_a1,
author = {A. D. Baranov and I. R. Kayumov},
title = {Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains},
journal = {Sbornik. Mathematics},
pages = {1674--1693},
year = {2023},
volume = {214},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/}
}
TY - JOUR AU - A. D. Baranov AU - I. R. Kayumov TI - Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains JO - Sbornik. Mathematics PY - 2023 SP - 1674 EP - 1693 VL - 214 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/ LA - en ID - SM_2023_214_12_a1 ER -
A. D. Baranov; I. R. Kayumov. Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1674-1693. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/
[1] J. E. Brennan, “The integrability of the derivative in conformal mapping”, J. London Math. Soc. (2), 18:2 (1978), 261–272 | DOI | MR | Zbl
[2] E. P. Dolženko (Dolzhenko), “Rational approximations and boundary properties of analytic functions”, Amer. Math. Soc. Transl. Ser. 2, 74, Amer. Math. Soc., Providence, RI, 1968, 61–90 | DOI | MR | Zbl
[3] E. P. Dolzhenko, “Some sharp integral bounds for derivatives of rational and algebraic functions. Applications”, Anal. Math., 4:4 (1978), 247–268 (Russian) | DOI | MR | Zbl
[4] V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl
[5] S. Semmes, “Trace ideal criteria for Hankel operators, and applications to Besov spaces”, Integral Equations Operator Theory, 7:2 (1984), 241–281 | DOI | MR | Zbl
[6] A. A. Pekarskiĭ, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR-Sb., 52:2 (1985), 557–574 | DOI | MR | Zbl
[7] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR | Zbl
[8] V. I. Dančenko (Danchenko), “An integral estimate for the derivative of a rational function”, Math. USSR-Izv., 14:2 (1980), 257–273 | DOI | MR | Zbl
[9] V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463 | DOI | MR | Zbl
[10] E. Dyn'kin, “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR | Zbl
[11] E. Dyn'kin, “Rational functions in Bergman spaces”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser Verlag, Basel, 2000, 77–94 | DOI | MR | Zbl
[12] A. Baranov and R. Zarouf, “A Bernstein-type inequality for rational functions in weighted Bergman spaces”, Bull. Sci. Math., 137:4 (2013), 541–556 | DOI | MR | Zbl
[13] A. Baranov and R. Zarouf, “The differentiation operator from model spaces to Bergman spaces and Peller type inequalities”, J. Anal. Math., 137:1 (2019), 189–209 | DOI | MR | Zbl
[14] A. Baranov and R. Zarouf, “$H^\infty$ interpolation and embedding theorems for rational functions”, Integral Equations Operator Theory, 91:3 (2019), 18, 19 pp. | DOI | MR | Zbl
[15] A. D. Baranov and I. R. Kayumov, “Estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane”, Izv. Math., 86:5 (2022), 839–851 | DOI | MR | Zbl
[16] A. D. Baranov and I. R. Kayumov, “Integral estimates of derivatives of rational functions in Hölder domains”, Dokl. Math., 106:3 (2022), 416–422 | DOI | MR | Zbl
[17] N. G. Makarov, “Probability methods in the theory of conformal mappings”, Leningrad Math. J., 1:1 (1990), 1–56 | MR | Zbl
[18] R. Bañuelos and C. N. Moore, “Mean growth of Bloch functions and Makarov's law of the iterated logarithm”, Proc. Amer. Math. Soc., 112:3 (1991), 851–854 | DOI | MR | Zbl
[19] A. D. Baranov and I. R. Kayumov, “Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries”, Russian Math. Surveys, 77:6 (2022), 1152–1154 | DOI | MR | Zbl
[20] Y. M. Chen and M. C. Liu, “On Littlewood's conjectural inequalities”, J. London Math. Soc. (2), 1:1 (1969), 385–397 | DOI | MR | Zbl
[21] D. Beliaev and S. Smirnov, “On Littlewood's constants”, Bull. London Math. Soc., 37:5 (2005), 719–726 | DOI | MR | Zbl
[22] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl
[23] M. Pavlović, Function classes on the unit disc. An introduction, De Gruyter Stud. Math., 52, 2nd ed., De Gruyter, Berlin, 2019, xv+553 pp. | DOI | MR | Zbl
[24] A. D. Baranov and K. Yu. Fedorovskiy, “On $L^1$-estimates of derivatives of univalent rational functions”, J. Anal. Math., 132 (2017), 63–80 | DOI | MR | Zbl
[25] N. G. Makarov, “Fine structure of harmonic measure”, St. Petersburg Math. J., 10:2 (1999), 217–268 | MR | Zbl
[26] H. Hedenmalm and S. Shimorin, “Weighted Bergman spaces and the integral means spectrum of conformal mappings”, Duke Math. J., 127:2 (2005), 341–393 | DOI | MR | Zbl
[27] N. G. Makarov and C. Pommerenke, “On coefficients, boundary size and Hölder domains”, Ann. Acad. Sci. Fenn. Math., 22:2 (1997), 305–312 | MR | Zbl
[28] J. E. Littlewood, “On some conjectural inequalities, with applications to the theory of integral functions”, J. London Math. Soc., 27:4 (1952), 387–393 | DOI | MR | Zbl
[29] I. R. Kayumov, “On an inequality for the universal spectrum of integral means”, Math. Notes, 84:1 (2008), 137–141 | DOI | MR | Zbl
[30] Yu. Belov, A. Borichev and K. Fedorovskiy, “Nevanlinna domains with large boundaries”, J. Funct. Anal., 277:8 (2019), 2617–2643 | DOI | MR | Zbl
[31] T. S. Mardvilko and A. A. Pekarskii, “Direct and inverse theorems of rational approximation in the Bergman space”, Sb. Math., 202:9 (2011), 1327–1346 | DOI | MR | Zbl
[32] D. Beliaev and S. Smirnov, “Random conformal snowflakes”, Ann. of Math. (2), 172:1 (2010), 597–615 | DOI | MR | Zbl