Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1674-1693 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of questions concerning the behaviour of double integrals of the moduli of the derivatives of bounded $n$-valent functions and, in particular, of rational functions of fixed degree $n$ are considered. For domains with rectifiable boundaries the sharp order of growth of such integral means is found in its dependence on $n$. Upper bounds for domains with fractal boundaries are obtained, which depend on the Minkowski dimension of the boundary of the domain. In certain cases these bounds are shown to be close to sharp ones. Lower bounds in terms of the integral means spectra of conformal mappings are also found. These inequalities refine Dolzhenko's classical results (1966) and some recent results due to the authors. Bibliography: 32 titles.
Keywords: $n$-valent functions, integral means, fractal boundaries, Minkowski dimension, integral means spectrum.
@article{SM_2023_214_12_a1,
     author = {A. D. Baranov and I. R. Kayumov},
     title = {Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains},
     journal = {Sbornik. Mathematics},
     pages = {1674--1693},
     year = {2023},
     volume = {214},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/}
}
TY  - JOUR
AU  - A. D. Baranov
AU  - I. R. Kayumov
TI  - Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1674
EP  - 1693
VL  - 214
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/
LA  - en
ID  - SM_2023_214_12_a1
ER  - 
%0 Journal Article
%A A. D. Baranov
%A I. R. Kayumov
%T Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains
%J Sbornik. Mathematics
%D 2023
%P 1674-1693
%V 214
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/
%G en
%F SM_2023_214_12_a1
A. D. Baranov; I. R. Kayumov. Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1674-1693. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a1/

[1] J. E. Brennan, “The integrability of the derivative in conformal mapping”, J. London Math. Soc. (2), 18:2 (1978), 261–272 | DOI | MR | Zbl

[2] E. P. Dolženko (Dolzhenko), “Rational approximations and boundary properties of analytic functions”, Amer. Math. Soc. Transl. Ser. 2, 74, Amer. Math. Soc., Providence, RI, 1968, 61–90 | DOI | MR | Zbl

[3] E. P. Dolzhenko, “Some sharp integral bounds for derivatives of rational and algebraic functions. Applications”, Anal. Math., 4:4 (1978), 247–268 (Russian) | DOI | MR | Zbl

[4] V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl

[5] S. Semmes, “Trace ideal criteria for Hankel operators, and applications to Besov spaces”, Integral Equations Operator Theory, 7:2 (1984), 241–281 | DOI | MR | Zbl

[6] A. A. Pekarskiĭ, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR-Sb., 52:2 (1985), 557–574 | DOI | MR | Zbl

[7] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR | Zbl

[8] V. I. Dančenko (Danchenko), “An integral estimate for the derivative of a rational function”, Math. USSR-Izv., 14:2 (1980), 257–273 | DOI | MR | Zbl

[9] V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463 | DOI | MR | Zbl

[10] E. Dyn'kin, “Inequalities for rational functions”, J. Approx. Theory, 91:3 (1997), 349–367 | DOI | MR | Zbl

[11] E. Dyn'kin, “Rational functions in Bergman spaces”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser Verlag, Basel, 2000, 77–94 | DOI | MR | Zbl

[12] A. Baranov and R. Zarouf, “A Bernstein-type inequality for rational functions in weighted Bergman spaces”, Bull. Sci. Math., 137:4 (2013), 541–556 | DOI | MR | Zbl

[13] A. Baranov and R. Zarouf, “The differentiation operator from model spaces to Bergman spaces and Peller type inequalities”, J. Anal. Math., 137:1 (2019), 189–209 | DOI | MR | Zbl

[14] A. Baranov and R. Zarouf, “$H^\infty$ interpolation and embedding theorems for rational functions”, Integral Equations Operator Theory, 91:3 (2019), 18, 19 pp. | DOI | MR | Zbl

[15] A. D. Baranov and I. R. Kayumov, “Estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane”, Izv. Math., 86:5 (2022), 839–851 | DOI | MR | Zbl

[16] A. D. Baranov and I. R. Kayumov, “Integral estimates of derivatives of rational functions in Hölder domains”, Dokl. Math., 106:3 (2022), 416–422 | DOI | MR | Zbl

[17] N. G. Makarov, “Probability methods in the theory of conformal mappings”, Leningrad Math. J., 1:1 (1990), 1–56 | MR | Zbl

[18] R. Bañuelos and C. N. Moore, “Mean growth of Bloch functions and Makarov's law of the iterated logarithm”, Proc. Amer. Math. Soc., 112:3 (1991), 851–854 | DOI | MR | Zbl

[19] A. D. Baranov and I. R. Kayumov, “Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries”, Russian Math. Surveys, 77:6 (2022), 1152–1154 | DOI | MR | Zbl

[20] Y. M. Chen and M. C. Liu, “On Littlewood's conjectural inequalities”, J. London Math. Soc. (2), 1:1 (1969), 385–397 | DOI | MR | Zbl

[21] D. Beliaev and S. Smirnov, “On Littlewood's constants”, Bull. London Math. Soc., 37:5 (2005), 719–726 | DOI | MR | Zbl

[22] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl

[23] M. Pavlović, Function classes on the unit disc. An introduction, De Gruyter Stud. Math., 52, 2nd ed., De Gruyter, Berlin, 2019, xv+553 pp. | DOI | MR | Zbl

[24] A. D. Baranov and K. Yu. Fedorovskiy, “On $L^1$-estimates of derivatives of univalent rational functions”, J. Anal. Math., 132 (2017), 63–80 | DOI | MR | Zbl

[25] N. G. Makarov, “Fine structure of harmonic measure”, St. Petersburg Math. J., 10:2 (1999), 217–268 | MR | Zbl

[26] H. Hedenmalm and S. Shimorin, “Weighted Bergman spaces and the integral means spectrum of conformal mappings”, Duke Math. J., 127:2 (2005), 341–393 | DOI | MR | Zbl

[27] N. G. Makarov and C. Pommerenke, “On coefficients, boundary size and Hölder domains”, Ann. Acad. Sci. Fenn. Math., 22:2 (1997), 305–312 | MR | Zbl

[28] J. E. Littlewood, “On some conjectural inequalities, with applications to the theory of integral functions”, J. London Math. Soc., 27:4 (1952), 387–393 | DOI | MR | Zbl

[29] I. R. Kayumov, “On an inequality for the universal spectrum of integral means”, Math. Notes, 84:1 (2008), 137–141 | DOI | MR | Zbl

[30] Yu. Belov, A. Borichev and K. Fedorovskiy, “Nevanlinna domains with large boundaries”, J. Funct. Anal., 277:8 (2019), 2617–2643 | DOI | MR | Zbl

[31] T. S. Mardvilko and A. A. Pekarskii, “Direct and inverse theorems of rational approximation in the Bergman space”, Sb. Math., 202:9 (2011), 1327–1346 | DOI | MR | Zbl

[32] D. Beliaev and S. Smirnov, “Random conformal snowflakes”, Ann. of Math. (2), 172:1 (2010), 597–615 | DOI | MR | Zbl