Convergence of a~sandpile on a~triangular lattice under rescaling
Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1651-1673

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a survey of results on convergence in sandpile models. For a sandpile model on a triangular lattice we prove results similar to the ones known for a square lattice. Namely, consider the sandpile model on the integer points of the plane and put $n$ grains of sand at the origin. Let us begin the process of relaxation: if the number of grains of sand at some vertex $z$ is not less than its valency (in this case we say that the vertex $z$ is unstable), then we move a grain of sand from $z$ to each adjacent vertex, and then repeat this operation as long as there are unstable vertices. We prove that the support of the state $(n\delta_0)^\circ$ in which the process stabilizes grows at a rate of $\sqrt n$ and, after rescaling with coefficient $\sqrt n$, $(n\delta_0)^\circ$ has a limit in the weak-$^*$ topology. This result was established by Pegden and Smart for the square lattice (where every vertex is connected with four nearest neighbours); we extend it to a triangular lattice (where every vertex is connected with six neighbours). Bibliography: 39 titles.
Keywords: sandpile models, discrete harmonic and superharmonic functions, discrete Green's function, triangular lattice.
@article{SM_2023_214_12_a0,
     author = {A. A. Aliev and N. S. Kalinin},
     title = {Convergence of a~sandpile on a~triangular lattice under rescaling},
     journal = {Sbornik. Mathematics},
     pages = {1651--1673},
     publisher = {mathdoc},
     volume = {214},
     number = {12},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a0/}
}
TY  - JOUR
AU  - A. A. Aliev
AU  - N. S. Kalinin
TI  - Convergence of a~sandpile on a~triangular lattice under rescaling
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1651
EP  - 1673
VL  - 214
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_12_a0/
LA  - en
ID  - SM_2023_214_12_a0
ER  - 
%0 Journal Article
%A A. A. Aliev
%A N. S. Kalinin
%T Convergence of a~sandpile on a~triangular lattice under rescaling
%J Sbornik. Mathematics
%D 2023
%P 1651-1673
%V 214
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_12_a0/
%G en
%F SM_2023_214_12_a0
A. A. Aliev; N. S. Kalinin. Convergence of a~sandpile on a~triangular lattice under rescaling. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1651-1673. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a0/