@article{SM_2023_214_12_a0,
author = {A. A. Aliev and N. S. Kalinin},
title = {Convergence of a~sandpile on a~triangular lattice under rescaling},
journal = {Sbornik. Mathematics},
pages = {1651--1673},
year = {2023},
volume = {214},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_12_a0/}
}
A. A. Aliev; N. S. Kalinin. Convergence of a sandpile on a triangular lattice under rescaling. Sbornik. Mathematics, Tome 214 (2023) no. 12, pp. 1651-1673. http://geodesic.mathdoc.fr/item/SM_2023_214_12_a0/
[1] W. Pegden, Sandpile gallery, https://www.math.cmu.edu/~wes/sand.html
[2] D. Dhar, “Theoretical studies of self-organized criticality”, Phys. A, 369:1 (2006), 29–70 | DOI | MR
[3] S. Corry and D. Perkinson, Divisors and sandpiles. An introduction to chip-firing, AMS Non-Ser. Monogr., 114, Amer. Math. Soc., Providence, RI, 2018, xiv+325 pp. | DOI | MR | Zbl
[4] W. Pegden and C. K. Smart, “Convergence of the Abelian sandpile”, Duke Math. J., 162:4 (2013), 627–642 | DOI | MR | Zbl
[5] H. Aleksanyan and H. Shahgholian, “Discrete balayage and boundary sandpile”, J. Anal. Math., 138:1 (2019), 361–403 | DOI | MR | Zbl
[6] D. Dhar, P. Ruelle, S. Sen and D.-N. Verma, “Algebraic aspects of Abelian sandpile models”, J. Phys. A, 28:4 (1995), 805–831 | DOI | MR | Zbl
[7] N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45 | DOI | MR | Zbl
[8] R. Bacher, P. de la Harpe and T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198 | DOI | MR | Zbl
[9] A. D. Mednykh and I. A. Mednykh, “Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians”, Russian Math. Surveys, 78:3 (2023), 501–548 | DOI
[10] M. Lang and M. Shkolnikov, “Harmonic dynamics of the abelian sandpile”, Proc. Natl. Acad. Sci. USA, 116:8 (2019), 2821–2830 | DOI | MR | Zbl
[11] M. Lang and M. Shkolnikov, Sandpile monomorphisms and harmonic functions, arXiv: 1904.12209v1
[12] K. Schmidt and E. Verbitskiy, “Abelian sandpiles and the harmonic model”, Comm. Math. Phys., 292:3 (2009), 721–759 | DOI | MR | Zbl
[13] N. Kalinin and V. Khramov, Sandpile group of infinite graphs, arXiv: 2305.05346
[14] A. A. Járai, “Thermodynamic limit of the abelian sandpile model on $Z^d$”, Markov Process. Related Fields, 11:2 (2005), 313–336 | MR | Zbl
[15] S. R. Athreya and A. A. Járai, “Infinite volume limit for the stationary distribution of abelian sandpile models”, Comm. Math. Phys., 249:1 (2004), 197–213 | DOI | MR | Zbl
[16] A. Fey, L. Levine and Y. Peres, “Growth rates and explosions in sandpiles”, J. Stat. Phys., 138:1–3 (2010), 143–159 | DOI | MR | Zbl
[17] Y. Le Borgne and D. Rossin, “On the identity of the sandpile group”, Discrete Math., 256:3 (2002), 775–790 | DOI | MR | Zbl
[18] L. Levine and Y. Peres, “Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile”, Potential Anal., 30:1 (2009), 1–27 | DOI | MR | Zbl
[19] L. Levine, W. Pegden and C. K. Smart, “Apollonian structure in the Abelian sandpile”, Geom. Funct. Anal., 26:1 (2016), 306–336 | DOI | MR | Zbl
[20] L. Levine, W. Pegden and C. K. Smart, “The Apollonian structure of integer superharmonic matrices”, Ann. of Math. (2), 186:1 (2017), 1–67 | DOI | MR | Zbl
[21] A. Melchionna, “The sandpile identity element on an ellipse”, Discrete Contin. Dyn. Syst., 42:8 (2022), 3709–3732 | DOI | MR | Zbl
[22] W. Pegden and C. K. Smart, “Stability of patterns in the Abelian sandpile”, Ann. Henri Poincaré, 21:4 (2020), 1383–1399 | DOI | MR | Zbl
[23] W. Pegden, Sandpiles! https://www.math.cmu.edu/~wes/sandgallery.html
[24] A. Bou-Rabee, Integer superharmonic matrices on the $F$-lattice, arXiv: 2110.07556
[25] M. Kapovich and A. Kontorovich, “On superintegral Kleinian sphere packings, bugs, and arithmetic groups”, J. Reine Angew. Math., 2023:798 (2023), 105–142 | DOI | MR | Zbl
[26] A. Bou-Rabee, “Dynamic dimensional reduction in the Abelian sandpile”, Comm. Math. Phys., 390:2 (2022), 933–958 | DOI | MR | Zbl
[27] N. Kalinin and M. Shkolnikov, “Tropical curves in sandpiles”, C. R. Math. Acad. Sci. Paris, 354:2 (2016), 125–130 | DOI | MR | Zbl
[28] N. Kalinin and M. Shkolnikov, “Introduction to tropical series and wave dynamic on them”, Discrete Contin. Dyn. Syst., 38:6 (2018), 2827–2849 | DOI | MR | Zbl
[29] N. Kalinin and M. Shkolnikov, “Sandpile solitons via smoothing of superharmonic functions”, Comm. Math. Phys., 378:3 (2020), 1649–1675 | DOI | MR | Zbl
[30] N. Kalinin and M. Shkolnikov, Tropical curves in sandpile models, arXiv: 1502.06284
[31] N. Kalinin, “Pattern formation and tropical geometry”, Front. Phys., 8 (2020), 581126, 10 pp. | DOI
[32] N. Kalinin, “Sandpile solitons in higher dimensions”, Arnold Math. J., 9:3 (2023), 435–454 | DOI | MR | Zbl
[33] N. Kalinin, Shrinking dynamic on multidimensional tropical series, arXiv: 2201.07982
[34] T. Horiguchi, “Lattice Green's functions for the triangular and honeycomb lattices”, J. Math. Phys., 13:9 (1972), 1411–1419 | DOI | MR
[35] N. Azimi-Tafreshi, H. Dashti-Naserabadi, S. Moghimi-Araghi and P. Ruelle, “The Abelian sandpile model on the honeycomb lattice”, J. Stat. Mech. Theory Exp., 2010:02 (2010), P02004, 24 pp. | DOI
[36] A. Poncelet and P. Ruelle, “Sandpile probabilities on triangular and hexagonal lattices”, J. Phys. A, 51:1 (2018), 015002, 25 pp. | DOI | MR | Zbl
[37] L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xxii+749 pp. | MR | Zbl
[38] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995, vi+104 pp. | DOI | MR | Zbl
[39] L. Levine and Y. Peres, “Scaling limits for internal aggregation models with multiple sources”, J. Anal. Math., 111:1 (2010), 151–219 | DOI | MR | Zbl