@article{SM_2023_214_11_a4,
author = {D. S. Taletskii},
title = {On the number of independent and $k$-dominating sets in graphs with average vertex degree at most~$k$},
journal = {Sbornik. Mathematics},
pages = {1627--1650},
year = {2023},
volume = {214},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a4/}
}
TY - JOUR AU - D. S. Taletskii TI - On the number of independent and $k$-dominating sets in graphs with average vertex degree at most $k$ JO - Sbornik. Mathematics PY - 2023 SP - 1627 EP - 1650 VL - 214 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a4/ LA - en ID - SM_2023_214_11_a4 ER -
D. S. Taletskii. On the number of independent and $k$-dominating sets in graphs with average vertex degree at most $k$. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1627-1650. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a4/
[1] H. Prodinger and R. F. Tichy, “Fibonacci numbers of graphs”, Fibonacci Quart., 20:1 (1982), 16–21 | MR | Zbl
[2] C. Heuberger and S. G. Wagner, “Maximizing the number of independent subsets over trees with bounded degree”, J. Graph Theory, 58:1 (2008), 49–68 | DOI | MR | Zbl
[3] N. Alon, “Independent sets in regular graphs and sum-free subsets of finite groups”, Israel J. Math., 73:2 (1991), 247–256 | DOI | MR | Zbl
[4] A. A. Sapozhenko, “Independent sets in quasi-regular graphs”, European J. Combin., 27:7 (2006), 1206–1210 | DOI | MR | Zbl
[5] J. Kahn, “An entropy approach to the hard-core model on bipartite graphs”, Combin. Probab. Comput., 10:3 (2001), 219–238 | DOI | MR | Zbl
[6] Yufei Zhao, “The number of independent sets in a regular graph”, Combin. Probab. Comput., 19:2 (2009), 315–320 | DOI | MR | Zbl
[7] A. B. Dainyak and A. A. Sapozhenko, “Independent sets in graphs”, Discrete Math. Appl., 26:6 (2016), 323–346 | DOI | MR | Zbl
[8] D. Bród and Z. Skupień, “Trees with extremal numbers of dominating sets”, Australas. J. Combin., 35 (2006), 273–290 | MR | Zbl
[9] S. Wagner, “A note on the number of dominating sets of a graph”, Util. Math., 92 (2013), 25–31 | MR | Zbl
[10] D. S. Taletskii, “Trees with extremal numbers of $k$-dominating sets”, Discrete Math., 345:1 (2022), 112656, 5 pp. | DOI | MR | Zbl