On the number of independent and $k$-dominating sets in graphs with average vertex degree at most~$k$
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1627-1650
Voir la notice de l'article provenant de la source Math-Net.Ru
The following conjecture is formulated: if the average vertex degree in a graph is not greater than a positive integer $k \geqslant 1$, then the number of $k$-dominating sets in this graph does not exceed the number of its independent sets, and these numbers are equal to each other if and only if the graph is $k$-regular. This conjecture is proved for $k \in \{1,2\}$.
Bibliography: 10 titles.
Keywords:
independent set, dominating set, $k$-dominating set, enumerative combinatorics.
@article{SM_2023_214_11_a4,
author = {D. S. Taletskii},
title = {On the number of independent and $k$-dominating sets in graphs with average vertex degree at most~$k$},
journal = {Sbornik. Mathematics},
pages = {1627--1650},
publisher = {mathdoc},
volume = {214},
number = {11},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a4/}
}
TY - JOUR AU - D. S. Taletskii TI - On the number of independent and $k$-dominating sets in graphs with average vertex degree at most~$k$ JO - Sbornik. Mathematics PY - 2023 SP - 1627 EP - 1650 VL - 214 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a4/ LA - en ID - SM_2023_214_11_a4 ER -
D. S. Taletskii. On the number of independent and $k$-dominating sets in graphs with average vertex degree at most~$k$. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1627-1650. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a4/