Characters of classical groups, Schur-type functions and discrete splines
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1585-1626 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a spectral problem related to finite-dimensional characters of the groups $Sp(2N)$, $SO(2N+1)$ and $SO(2N)$, which form the classical series $\mathcal{C}$, $\mathcal{B}$ and $\mathcal{D}$, respectively. Irreducible characters of these three series are given by $N$-variate symmetric polynomials. The spectral problem in question consists in the decomposition of characters after their restriction to subgroups of the same type but smaller rank $K. The main result of the paper is the derivation of explicit determinantal formulae for the coefficients of the expansion. In fact, first we compute these coefficients in greater generality — for the multivariate symmetric Jacobi polynomials depending on two continuous parameters. Next, we show that the formulae are drastically simplified in the three special cases of Jacobi polynomials corresponding to characters of the series $\mathcal{C}$, $\mathcal{B}$ and $\mathcal{D}$. In particular, we show that then these coefficients are given by piecewise polynomial functions. This is where a link with discrete splines arises. For characters of the series $\mathcal{A}$ (that is, of the unitary groups $U(N)$) similar results were obtained previously by Borodin and this author [5], and then reproved by Petrov [39] by another method. The case of symplectic and orthogonal characters is more intricate. Bibliography: 58 titles.
Keywords: characters of classical groups, Schur functions, discrete splines, generalized hypergeometric series.
@article{SM_2023_214_11_a3,
     author = {G. I. Olshanski},
     title = {Characters of classical groups, {Schur-type} functions and discrete splines},
     journal = {Sbornik. Mathematics},
     pages = {1585--1626},
     year = {2023},
     volume = {214},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a3/}
}
TY  - JOUR
AU  - G. I. Olshanski
TI  - Characters of classical groups, Schur-type functions and discrete splines
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1585
EP  - 1626
VL  - 214
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a3/
LA  - en
ID  - SM_2023_214_11_a3
ER  - 
%0 Journal Article
%A G. I. Olshanski
%T Characters of classical groups, Schur-type functions and discrete splines
%J Sbornik. Mathematics
%D 2023
%P 1585-1626
%V 214
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a3/
%G en
%F SM_2023_214_11_a3
G. I. Olshanski. Characters of classical groups, Schur-type functions and discrete splines. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1585-1626. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a3/

[1] M. Aissen, I. J. Schoenberg and A. M. Whitney, “On the generating functions of totally positive sequences. I”, J. Anal. Math., 2 (1952), 93–103 | DOI | MR | Zbl

[2] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl

[3] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Math. and Math. Phys., 32, Cambridge Univ. Press, Cambridge, 1935, vii+108 pp. | MR | Zbl

[4] S. Billey, V. Guillemin and E. Rassart, “A vector partition function for the multiplicities of $\mathfrak{sl}_k\mathbb C$”, J. Algebra, 278:1 (2004), 251–293 | DOI | MR | Zbl

[5] A. Borodin and G. Olshanski, “The boundary of the Gelfand-Tsetlin graph: a new approach”, Adv. Math., 230:4–6 (2012), 1738–1779 | DOI | MR | Zbl

[6] A. Borodin and G. Olshanski, “The Young bouquet and its boundary”, Mosc. Math. J., 13:2 (2013), 193–232 | DOI | MR | Zbl

[7] A. Borodin and G. Olshanski, Representations of the infinite symmetric group, Cambridge Stud. Adv. Math., 160, Cambridge Univ. Press, Cambridge, 2017, vii+160 pp. | DOI | MR | Zbl

[8] R. P. Boyer, “Characters and factor representations of the infinite dimensional classical groups”, J. Operator Theory, 28:2 (1992), 281–307 | MR | Zbl

[9] Yu. A. Brychkov, Handbook of special functions. Derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL, 2008, xx+680 pp. | DOI | MR | Zbl

[10] G. Budakçi and H. Oruç, “Further properties of quantum spline spaces”, Mathematics, 8:10 (2020), 1770, 10 pp. | DOI

[11] H. B. Curry and I. J. Schoenberg, “On Pólya frequency functions. IV. The fundamental spline functions and their limits”, J. Anal. Math., 17 (1966), 71–107 | DOI | MR | Zbl

[12] M. Defosseux, “Orbit measures, random matrix theory and interlaced determinantal processes”, Ann. Inst. Henri Poincaré Probab. Stat., 46:1 (2010), 209–249 | DOI | MR | Zbl

[13] A. Edrei, “On the generating functions of totally positive sequences. II”, J. Anal. Math., 2 (1952), 104–109 | DOI | MR | Zbl

[14] A. Edrei, “On the generating function of a doubly infinite, totally positive sequence”, Trans. Amer. Math. Soc., 74 (1953), 367–383 | DOI | MR | Zbl

[15] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | Zbl

[16] J. Faraut, “Rayleigh theorem, projection of orbital measures and spline functions”, Adv. Pure Appl. Math., 6:4 (2015), 261–283 | DOI | MR | Zbl

[17] I. Gessel and D. Stanton, “Strange evaluations of hypergeometric series”, SIAM J. Math. Anal., 13:2 (1982), 295–308 | DOI | MR | Zbl

[18] V. Gorin, “The $q$-Gelfand-Tsetlin graph, Gibbs measures and $q$-Toeplitz matrices”, Adv. Math., 229:1 (2012), 201–266 | DOI | MR | Zbl

[19] V. Gorin and G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418 | DOI | MR | Zbl

[20] V. Gorin and G. Panova, “Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory”, Ann. Probab., 43:6 (2015), 3052–3132 | DOI | MR | Zbl

[21] G. Heckman and G. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspect. Math., 16, Academic Press, Inc., San Diego, CA, 1994, xii+225 pp. | MR | Zbl

[22] S. Kerov, A. Okounkov and G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not. IMRN, 1998:4 (1998), 173–199 | DOI | MR | Zbl

[23] C. Krattenthaler and K. Srinivasa Rao, “Automatic generation of hypergeometric identities by the beta integral method”, J. Comput. Appl. Math., 160:1–2 (2003), 159–173 | DOI | MR | Zbl

[24] M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312:6 (1991), 425–428 | MR | Zbl

[25] F. W. Lawvere, The category of probabilistic mappings, 1962 https://ncatlab.org/nlab/files/lawvereprobability1962.pdf

[26] I. G. Macdonald, “Schur functions: theme and variations”, Séminaire Lotharingien de combinatoire, 28th session (Saint-Nabor 1992), Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Dép. Math., Inst. Rech. Math. Av., Strasbourg, 1992, 5–39 | MR | Zbl

[27] A. I. Molev, “Comultiplication rules for the double Schur functions and Cauchy identities”, Electron. J. Combin., 16:1 (2009), R13, 44 pp. | DOI | MR | Zbl

[28] J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada, “Tableau representation for Macdonald's ninth variation of Schur functions”, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 180–195 | DOI | MR | Zbl

[29] A. Okounkov and G. Olshanskii, “Shifted Schur functions”, St. Petersburg Math. J., 9:2 (1998), 239–300 | MR | Zbl

[30] A. Okounkov and G. Olshanski, “Shifted Schur functions. II. The binomial formula for characters of classical groups and its applications”, Kirillov's seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, 181, Adv. Math. Sci., 35, Amer. Math. Soc., Providence, RI, 1998, 245–271 | DOI | MR | Zbl

[31] A. Okounkov and G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Int. Math. Res. Not. IMRN, 1998:13 (1998), 641–682 | DOI | MR | Zbl

[32] A. Okounkov and G. Olshanski, “Limits of $BC$-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 281–318 | DOI | MR | Zbl

[33] G. Olshanski, “Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines”, J. Lie Theory, 23:4 (2013), 1011–1022 | MR | Zbl

[34] G. I. Ol'shanskii, “Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO(p,\infty)$, $Sp(p, \infty)$ and the corresponding motion groups”, Funct. Anal. Appl., 12:3 (1978), 185–195 | DOI | MR | Zbl

[35] G. Olshanski, “The Gelfand-Tsetlin graph and Markov processes”, Proceedings of the international congress of mathematicians (Seoul 2014), v. IV, Kyung Moon Sa, Seoul, 2014, 431–453 ; arXiv: http://www.icm2014.org/en/vod/proceedings.html1404.3646 | MR | Zbl

[36] G. I. Olshanski, “Extended Gelfand-Tsetlin graph, its $q$-boundary, and $q$-B-splines”, Funct. Anal. Appl., 50:2 (2016), 107–130 | DOI | DOI | MR | Zbl

[37] G. Olshanski, “Interpolation Macdonald polynomials and Cauchy-type identities”, J. Combin. Theory Ser. A, 162 (2019), 65–117 | DOI | MR | Zbl

[38] G. Olshanski and A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary mathematical physics, F. A. Berezin memorial volume, Amer. Math. Soc. Transl. Ser. 2, 175, Adv. Math. Sci., 31, Amer. Math. Soc., Providence, RI, 1996, 137–175 | DOI | MR | Zbl

[39] L. Petrov, “The boundary of the Gelfand-Tsetlin graph: new proof of Borodin-Olshanski's formula, and its $q$-analogue”, Mosc. Math. J., 14:1 (2014), 121–160 | DOI | MR | Zbl

[40] D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26 | DOI | MR | Zbl

[41] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Sci. Publ., New York, 1990, 800 pp. | MR | MR | Zbl | Zbl

[42] E. M. Rains, A letter to the author, June 13, 2013

[43] E. Rassart, “A polynomiality property for Littlewood-Richardson coefficients”, J. Combin. Theory Ser. A, 107:2 (2004), 161–179 | DOI | MR | Zbl

[44] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841 | DOI | MR | Zbl

[45] I. J. Schoenberg, “On Pólya frequency functions. I. The totally positive functions and their Laplace transforms”, J. Anal. Math., 1 (1951), 331–374 | DOI | MR | Zbl

[46] L. L. Schumaker, Spline functions: basic theory, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2007, xvi+582 pp. | DOI | MR | Zbl

[47] A. N. Sergeev and A. P. Veselov, “Jacobi-Trudy formula for generalized Schur polynomials”, Mosc. Math. J., 14:1 (2014), 161–168 ; arXiv: 0905.2557 | DOI | MR | Zbl

[48] P. Simeonov and R. Goldman, “Quantum B-splines”, BIT, 53:1 (2013), 193–223 | DOI | MR | Zbl

[49] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966, xiii+273 pp. | MR | Zbl

[50] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[51] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl

[52] A. M. Vershik and S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Funct. Anal. Appl., 15:4 (1981), 246–255 | DOI | MR | Zbl

[53] A. M. Vershik and S. V. Kerov, “Characters and factor representations of the infinite unitary group”, Soviet Math. Dokl., 26:3 (1982), 570–574 | MR | Zbl

[54] D. Voiculescu, “Représentations factorielles de type $II_1$ de $U(\infty)$”, J. Math. Pures Appl. (9), 55:1 (1976), 1–20 | MR | Zbl

[55] J. A. Wilson, Hypergeometric series recurrence relations and some new orthogonal functions, Ph.D. Thesis, Univ. of Wisconsin, Madison, WI, 1978, 67 pp. | MR

[56] A. Zhedanov, “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101:2 (1999), 303–329 | DOI | MR | Zbl

[57] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973, viii+448 pp. | DOI | MR | MR | Zbl | Zbl

[58] D. I. Zubov, “Projections of orbital measures for classical Lie groups”, Funct. Anal. Appl., 50:3 (2016), 228–232 | DOI | DOI | MR | Zbl