Entropy solution for an equation with measure-valued potential in a hyperbolic space
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1534-1559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Dirichlet problem in the hyperbolic space for a nonlinear elliptic equation of the second order with singular measure-valued potential. The assumptions on the structure of the equation are stated in terms of a generalized $N$-function. It is shown that this problem has an entropy solution. Bibliography: 16 titles.
Keywords: nonlinear elliptic equation, entropy solution, hyperbolic space, Musielak-Orlicz space.
@article{SM_2023_214_11_a1,
     author = {V. F. Vil'danova and F. Kh. Mukminov},
     title = {Entropy solution for an equation with measure-valued potential in a~hyperbolic space},
     journal = {Sbornik. Mathematics},
     pages = {1534--1559},
     year = {2023},
     volume = {214},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/}
}
TY  - JOUR
AU  - V. F. Vil'danova
AU  - F. Kh. Mukminov
TI  - Entropy solution for an equation with measure-valued potential in a hyperbolic space
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1534
EP  - 1559
VL  - 214
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/
LA  - en
ID  - SM_2023_214_11_a1
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%A F. Kh. Mukminov
%T Entropy solution for an equation with measure-valued potential in a hyperbolic space
%J Sbornik. Mathematics
%D 2023
%P 1534-1559
%V 214
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/
%G en
%F SM_2023_214_11_a1
V. F. Vil'danova; F. Kh. Mukminov. Entropy solution for an equation with measure-valued potential in a hyperbolic space. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1534-1559. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/

[1] Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[2] N. Saintier and L. Véron, “Nonlinear elliptic equations with measure valued absorption potential”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22:1 (2021), 351–397 | DOI | MR | Zbl

[3] V. F. Vil'danova and F. Kh. Mukminov, “Perturbations of nonlinear elliptic operators by potentials in the space of multiplicators”, J. Math. Sci. (N.Y.), 257:5 (2021), 569–578 | DOI | MR | Zbl

[4] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holder, Solvable models in quantum mechanics, With an appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005, xiv+488 pp. | DOI | MR | Zbl

[5] M. I. Neiman-zade and A. A. Shkalikov, “Schrödinger operators with singular potentials from the space of multiplicators”, Math. Notes, 66:5 (1999), 599–607 | DOI | MR | Zbl

[6] A. Malusa and M. M. Porzio, “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389 | DOI | MR | Zbl

[7] L. M. Kozhevnikova, “On solutions of elliptic equations with variable exponents and measure data in $\mathbb R^n$”, Differential equations on manifolds and mathematical physics, Dedicated to the memory of B. Sternin, Trends Math., Birkhäuser/Springer, Cham, 2021, 221–239 | DOI | MR | Zbl

[8] L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367 | DOI | MR | Zbl

[9] A. P. Kashnikova and L. M. Kozhevnikova, “Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces”, Sb. Math., 213:4 (2022), 476–511 | DOI | MR | Zbl

[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp. | DOI | MR | Zbl

[11] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Math., 2236, Springer, Cham, 2019, x+167 pp. | DOI | MR | Zbl

[12] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren Math. Wiss., 252, Springer-Verlag, New York, 1982, xii+204 pp. | DOI | MR | Zbl

[13] M. B. Benboubker, E. Azroul and A. Barbara, “Quasilinear elliptic problems with nonstandard growth”, Electron. J. Differential Equations, 2011, 62, 16 pp. | MR | Zbl

[14] G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double non-linearity”, Sb. Math., 188:9 (1997), 1343–1370 | DOI | MR | Zbl

[15] N. Dunford and J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | Zbl

[16] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | Zbl