Entropy solution for an equation with measure-valued potential in a~hyperbolic space
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1534-1559
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Dirichlet problem in the hyperbolic space for a nonlinear elliptic equation of the second order with singular measure-valued potential. The assumptions on the structure of the equation are stated in terms of a generalized $N$-function. It is shown that this problem has an entropy solution.
Bibliography: 16 titles.
Keywords:
nonlinear elliptic equation, entropy solution, hyperbolic space, Musielak-Orlicz space.
@article{SM_2023_214_11_a1,
author = {V. F. Vil'danova and F. Kh. Mukminov},
title = {Entropy solution for an equation with measure-valued potential in a~hyperbolic space},
journal = {Sbornik. Mathematics},
pages = {1534--1559},
publisher = {mathdoc},
volume = {214},
number = {11},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/}
}
TY - JOUR AU - V. F. Vil'danova AU - F. Kh. Mukminov TI - Entropy solution for an equation with measure-valued potential in a~hyperbolic space JO - Sbornik. Mathematics PY - 2023 SP - 1534 EP - 1559 VL - 214 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/ LA - en ID - SM_2023_214_11_a1 ER -
V. F. Vil'danova; F. Kh. Mukminov. Entropy solution for an equation with measure-valued potential in a~hyperbolic space. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1534-1559. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a1/