Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1501-1533
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{S_n,\,n\geqslant 0\}$ be a random walk with increments that belong (without centering) to the domain of attraction of an $alpha$-stable law, that is, there exists a process $\{Y_t,\,t\geqslant 0\}$ such that $S_{nt}/a_{n}$ $\Rightarrow$ $Y_t$, $t\geqslant 0$, as $n\to\infty$ for some scaling constants $a_n$. Assuming that $S_{0}=o(a_n)$ and $S_n\leqslant \varphi (n)=o(a_n)$, we prove several conditional limit theorems for the distribution of the random variable $S_{n-m}$ given that $m=o(n)$ and $\min_{0\leqslant k\leqslant n}S_k\geqslant 0$. These theorems supplement the assertions established by Caravenna and Chaumont in 2013. Our results are used to study the population size of a critical branching process evolving in an unfavourable environment. 
Bibliography: 28 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
random walks, stable law, conditional limit theorems, branching processes, unfavourable random environment.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_11_a0,
     author = {V. A. Vatutin and C. Dong and E. E. Dyakonova},
     title = {Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment},
     journal = {Sbornik. Mathematics},
     pages = {1501--1533},
     publisher = {mathdoc},
     volume = {214},
     number = {11},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/}
}
                      
                      
                    TY - JOUR AU - V. A. Vatutin AU - C. Dong AU - E. E. Dyakonova TI - Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment JO - Sbornik. Mathematics PY - 2023 SP - 1501 EP - 1533 VL - 214 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/ LA - en ID - SM_2023_214_11_a0 ER -
%0 Journal Article %A V. A. Vatutin %A C. Dong %A E. E. Dyakonova %T Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment %J Sbornik. Mathematics %D 2023 %P 1501-1533 %V 214 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/ %G en %F SM_2023_214_11_a0
V. A. Vatutin; C. Dong; E. E. Dyakonova. Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1501-1533. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/
