Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1501-1533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{S_n,\,n\geqslant 0\}$ be a random walk with increments that belong (without centering) to the domain of attraction of an $alpha$-stable law, that is, there exists a process $\{Y_t,\,t\geqslant 0\}$ such that $S_{nt}/a_{n}$ $\Rightarrow$ $Y_t$, $t\geqslant 0$, as $n\to\infty$ for some scaling constants $a_n$. Assuming that $S_{0}=o(a_n)$ and $S_n\leqslant \varphi (n)=o(a_n)$, we prove several conditional limit theorems for the distribution of the random variable $S_{n-m}$ given that $m=o(n)$ and $\min_{0\leqslant k\leqslant n}S_k\geqslant 0$. These theorems supplement the assertions established by Caravenna and Chaumont in 2013. Our results are used to study the population size of a critical branching process evolving in an unfavourable environment. Bibliography: 28 titles.
Keywords: random walks, stable law, conditional limit theorems, branching processes, unfavourable random environment.
@article{SM_2023_214_11_a0,
     author = {V. A. Vatutin and C. Dong and E. E. Dyakonova},
     title = {Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment},
     journal = {Sbornik. Mathematics},
     pages = {1501--1533},
     year = {2023},
     volume = {214},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - C. Dong
AU  - E. E. Dyakonova
TI  - Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1501
EP  - 1533
VL  - 214
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/
LA  - en
ID  - SM_2023_214_11_a0
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A C. Dong
%A E. E. Dyakonova
%T Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
%J Sbornik. Mathematics
%D 2023
%P 1501-1533
%V 214
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/
%G en
%F SM_2023_214_11_a0
V. A. Vatutin; C. Dong; E. E. Dyakonova. Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1501-1533. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/

[1] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] V. I. Afanasyev, “Invariance principle for a critical Galton-Watson process attaining a high level”, Theory Probab. Appl., 55:4 (2011), 559–574 | DOI | MR | Zbl

[3] V. I. Afanasyev, C. Böinghoff, G. Kersting and V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[4] J. Bertoin and R. A. Doney, “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22:4 (1994), 2152–2167 | DOI | MR | Zbl

[5] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[6] E. Bolthausen, “On a functional central limit theorem for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485 | DOI | MR | Zbl

[7] A. Bryn-Jones and R. A. Doney, “A functional limit theorem for random walk conditioned to stay non-negative”, J. London Math. Soc. (2), 74:1 (2006), 244–258 | DOI | MR | Zbl

[8] L. Chaumont, “Excursion normalisée, méandre at pont pour les processus de Lévy stables”, Bull. Sci. Math., 121:5 (1997), 377–403 | MR | Zbl

[9] F. Caravenna, “A local limit theorem for random walks conditioned to stay positive”, Probab. Theory Related Fields, 133:4 (2005), 508–530 | DOI | MR | Zbl

[10] F. Caravenna and L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincaré Probab. Stat., 44:1 (2008), 170–190 | DOI | MR | Zbl

[11] F. Caravenna and L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp. | DOI | MR | Zbl

[12] L. Chaumont and R. A. Doney, “Invariance principles for local times at the maximum of random walks and Lévy processes”, Ann. Probab., 38:4 (2010), 1368–1389 | DOI | MR | Zbl

[13] F. den Hollander, Random polymers, École d'Été de Probabilités de Saint-Flour XXXVII – 2007, Lecture Notes in Math., 1974, Springer-Verlag, Berlin, 2009, xiv+258 pp. | DOI | MR | Zbl

[14] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3–4 (2012), 559–588 | DOI | MR | Zbl

[15] W. Feller, An introduction to probability theory and its applications, v. 2, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+626 pp. | MR | Zbl

[16] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | Zbl

[17] D. L. Iglehart, “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:2 (1974), 608–619 | DOI | MR | Zbl

[18] W. D. Kaigh, “An invariance principle for random walk conditioned by a late return to zero”, Ann. Probab., 4:1 (1976), 115–121 | DOI | MR | Zbl

[19] G. Kersting and V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp. | DOI | Zbl

[20] T. M. Liggett, “An invariance principle for conditioned sums of independent random variables”, J. Math. Mech., 18:6 (1968), 559–570 | DOI | MR | Zbl

[21] B. A. Rogozin, “The distribution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl

[22] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | Zbl

[23] Ya. G. Sinai, “On the distribution of the first positive sum for a sequence of independent random variables”, Theory Probab. Appl., 2:1 (1957), 122–129 | DOI | Zbl

[24] C. Stone, “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36:2 (1965), 546–551 | DOI | MR | Zbl

[25] V. A. Vatutin and V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1–2 (2009), 177–217 | DOI | MR | Zbl

[26] V. Vatutin and E. Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 | DOI | MR | Zbl

[27] V. A. Vatutin and E. E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, 2022, 15 pp., arXiv: 2209.13611

[28] V. A. Vatutin and E. E. Dyakonova, “Population size of a critical branching process evolving in an unfavorable environment”, Theory Probab. Appl., 68:3 (2023), 411–430 | DOI