Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1501-1533

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{S_n,\,n\geqslant 0\}$ be a random walk with increments that belong (without centering) to the domain of attraction of an $alpha$-stable law, that is, there exists a process $\{Y_t,\,t\geqslant 0\}$ such that $S_{nt}/a_{n}$ $\Rightarrow$ $Y_t$, $t\geqslant 0$, as $n\to\infty$ for some scaling constants $a_n$. Assuming that $S_{0}=o(a_n)$ and $S_n\leqslant \varphi (n)=o(a_n)$, we prove several conditional limit theorems for the distribution of the random variable $S_{n-m}$ given that $m=o(n)$ and $\min_{0\leqslant k\leqslant n}S_k\geqslant 0$. These theorems supplement the assertions established by Caravenna and Chaumont in 2013. Our results are used to study the population size of a critical branching process evolving in an unfavourable environment. Bibliography: 28 titles.
Keywords: random walks, stable law, conditional limit theorems, branching processes, unfavourable random environment.
@article{SM_2023_214_11_a0,
     author = {V. A. Vatutin and C. Dong and E. E. Dyakonova},
     title = {Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment},
     journal = {Sbornik. Mathematics},
     pages = {1501--1533},
     publisher = {mathdoc},
     volume = {214},
     number = {11},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - C. Dong
AU  - E. E. Dyakonova
TI  - Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1501
EP  - 1533
VL  - 214
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/
LA  - en
ID  - SM_2023_214_11_a0
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A C. Dong
%A E. E. Dyakonova
%T Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
%J Sbornik. Mathematics
%D 2023
%P 1501-1533
%V 214
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/
%G en
%F SM_2023_214_11_a0
V. A. Vatutin; C. Dong; E. E. Dyakonova. Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1501-1533. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a0/