Efficient computations with counting functions on free groups and free monoids
Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1458-1499

Voir la notice de l'article provenant de la source Math-Net.Ru

We present efficient algorithms to decide whether two given counting functions on nonabelian free groups or monoids are at bounded distance from each other and to decide whether two given counting quasimorphisms on nonabelian free groups are cohomologous. We work in the multi-tape Turing machine model with nonconstant-time arithmetic operations. In the case of integer coefficients we construct an algorithm of linear time complexity (assuming that the rank is at least $3$ in the monoid case). In the case of rational coefficients we prove that the time complexity is $O(N\log N)$, where $N$ denotes the size of the input, that is, it is the same as in addition of rational numbers (implemented using the Harvey-van der Hoeven algorithm for integer multiplication). These algorithms are based on our previous work which characterizes bounded counting functions. Bibliography: 20 titles.
Keywords: free monoid, free group, counting function, bounded cohomology.
Mots-clés : quasimorphism
@article{SM_2023_214_10_a5,
     author = {A. L. Talambutsa and T. Hartnick},
     title = {Efficient computations with counting functions on free groups and free monoids},
     journal = {Sbornik. Mathematics},
     pages = {1458--1499},
     publisher = {mathdoc},
     volume = {214},
     number = {10},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a5/}
}
TY  - JOUR
AU  - A. L. Talambutsa
AU  - T. Hartnick
TI  - Efficient computations with counting functions on free groups and free monoids
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1458
EP  - 1499
VL  - 214
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a5/
LA  - en
ID  - SM_2023_214_10_a5
ER  - 
%0 Journal Article
%A A. L. Talambutsa
%A T. Hartnick
%T Efficient computations with counting functions on free groups and free monoids
%J Sbornik. Mathematics
%D 2023
%P 1458-1499
%V 214
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_10_a5/
%G en
%F SM_2023_214_10_a5
A. L. Talambutsa; T. Hartnick. Efficient computations with counting functions on free groups and free monoids. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1458-1499. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a5/