Mots-clés : quasimorphism
@article{SM_2023_214_10_a5,
author = {A. L. Talambutsa and T. Hartnick},
title = {Efficient computations with counting functions on free groups and free monoids},
journal = {Sbornik. Mathematics},
pages = {1458--1499},
year = {2023},
volume = {214},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a5/}
}
A. L. Talambutsa; T. Hartnick. Efficient computations with counting functions on free groups and free monoids. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1458-1499. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a5/
[1] R. Brooks, “Some remarks on bounded cohomology”, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York, Stony Brook, NY 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 53–63 | DOI | MR | Zbl
[2] D. Calegari, scl, MSJ Mem., 20, Math. Soc. Japan, Tokyo, 2009, xii+209 pp. | DOI | MR | Zbl
[3] S. Cook, On the minimum computation time of functions, Ph.D. thesis, Harvard Univ., Cambridge, MA, 1966
[4] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, 2nd ed., MIT Press, Cambridge, MA; McGraw-Hill Book Co., Boston, MA, 2001, xxii+1180 pp. | MR | Zbl
[5] R. Frigerio, Bounded cohomology of discrete groups, Math. Surveys Monogr., 227, Amer. Math. Soc., Providence, RI, 2017, xvi+193 pp. | DOI | MR | Zbl
[6] R. I. Grigorchuk, “Some results on bounded cohomology”, Combinatorial and geometric group theory (Edinburgh 1993), London Math. Soc. Lecture Notes Ser., 204, Cambridge Univ. Press, Cambridge, 1995, 111–163 | DOI | MR | Zbl
[7] T. Hartnick and P. Schweitzer, “On quasioutomorphism groups of free groups and their transitivity properties”, J. Algebra, 450 (2016), 242–281 | DOI | MR | Zbl
[8] T. Hartnick and A. Sisto, “Bounded cohomology and virtually free hyperbolically embedded subgroups”, Groups Geom. Dyn., 13:2 (2019), 677–694 | DOI | MR | Zbl
[9] T. Hartnick and A. Talambutsa, “Relations between counting functions on free groups and free monoids”, Groups Geom. Dyn., 12:4 (2018), 1485–1521 | DOI | MR | Zbl
[10] A. Hase, Dynamics of $\operatorname{Out}(F_n)$ on the second bounded cohomology of $F_n$, arXiv: 1805.00366
[11] D. Harvey and J. van der Hoeven, “Integer multiplication in time $O(n\log n)$”, Ann. of Math. (2), 193:2 (2021), 563–617 | DOI | MR | Zbl
[12] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to automata theory, languages, and computation, 3rd ed., Pearson Education, Inc., Boston, MA, 2006, xvii+535 pp. | MR | Zbl
[13] P. Kiyashko, Bases for counting functions on free monoids and groups, arXiv: 2306.15520
[14] I. Krasikov and Y. Roditty, “On a reconstruction problem for sequences”, J. Combin. Theory Ser. A, 77:2 (1997), 344–348 | DOI | MR | Zbl
[15] V. I. Levenstein, “Efficient reconstruction of sequences from their subsequences and supersequences”, J. Combin. Theory Ser. A, 93:2 (2001), 310–332 | DOI | MR | Zbl
[16] M. Lothaire, Combinatorics on words, Cambridge Math. Lib., 2nd ed., Cambridge Univ. Press, Cambridge, 1997, xviii+238 pp. | DOI | MR | Zbl
[17] D. Osin, “Acylindrically hyperbolic groups”, Trans. Amer. Math. Soc., 368:2 (2016), 851–888 | DOI | MR | Zbl
[18] M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp. | DOI | MR | Zbl
[19] A. Schonhage and V. Strassen, “Schnelle Multiplikation großer Zahlen”, Computing (Arch. Elektron. Rechnen), 7 (1971), 281–292 | DOI | MR | Zbl
[20] A. L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of integers”, Soviet Math. Dokl., 4 (1963), 714–716 | MR | Zbl