Generic extensions of ergodic systems
Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1442-1457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservation of algebraic properties generally depends on statistical properties of the base. It is established that the $P$-entropy of a generic extension is infinite. This fact yields a new proof of the result due to Weiss, Glasner, Austin and Thouvenot on the nondominance of deterministic actions. Generic measurable families of automorphisms of a probability space are considered. It is shown that the asymptotic behaviour of representatives of a generic family is characterized by a combination of dynamic conformism and dynamic individualism. Bibliography: 15 titles.
Keywords: ergodic action, $P$-entropy, mixing, spectrum, generic properties of extensions.
@article{SM_2023_214_10_a4,
     author = {V. V. Ryzhikov},
     title = {Generic extensions of ergodic systems},
     journal = {Sbornik. Mathematics},
     pages = {1442--1457},
     year = {2023},
     volume = {214},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a4/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Generic extensions of ergodic systems
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1442
EP  - 1457
VL  - 214
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a4/
LA  - en
ID  - SM_2023_214_10_a4
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Generic extensions of ergodic systems
%J Sbornik. Mathematics
%D 2023
%P 1442-1457
%V 214
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2023_214_10_a4/
%G en
%F SM_2023_214_10_a4
V. V. Ryzhikov. Generic extensions of ergodic systems. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1442-1457. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a4/

[1] A. Stepin and S. Tikhonov, “Group actions: entropy, mixing, spectra and generic properties”, Topology, geometry, and dynamics. V. A. Rokhlin-memorial, Contemp. Math., 772, Amer. Math. Soc., Providence, RI, 2021, 311–324 | DOI | MR | Zbl

[2] L. Bowen, “Zero entropy is generic”, Entropy, 18:6 (2016), 220, 20 pp. | DOI | MR

[3] M. Schnurr, “Generic properties of extensions”, Ergodic Theory Dynam. Systems, 39:11 (2019), 3144–3168 | DOI | MR | Zbl

[4] E. Glasner and B. Weiss, “Relative weak mixing is generic”, Sci. China Math., 62:1 (2019), 69–72 | DOI | MR | Zbl

[5] T. Adams, “Genericity and rigidity for slow entropy transformations”, New York J. Math., 27 (2021), 393–416 | MR | Zbl

[6] E. Glasner, J.-P. Thouvenot and B. Weiss, “On some generic classes of ergodic measure preserving transformations”, Trans. Moscow Math. Soc., 82 (2021), 15–36 | DOI | MR | Zbl

[7] V. V. Ryzhikov, “Compact families and typical entropy invariants of measure-preserving actions”, Trans. Moscow Math. Soc., 82 (2021), 117–123 | DOI | MR | Zbl

[8] G. A. Veprev, “The scaling entropy of a generic action”, J. Math. Sci. (N.Y.), 261:5 (2022), 595–600 | DOI | MR | Zbl

[9] T. Austin, E. Glasner, J.-P. Thouvenot and B. Weiss, “An ergodic system is dominant exactly when it has positive entropy”, Ergodic Theory Dynam. Systems, 43:10 (2023), 3216–3230 | DOI

[10] A. G. Kushnirenko, “On metric invariants of entropy type”, Russian Math. Surveys, 22:5 (1967), 53–61 | DOI | MR | Zbl

[11] A. I. Bashtanov, “Generic mixing transformations are rank 1”, Math. Notes, 93:2 (2013), 209–216 | DOI | MR | Zbl

[12] V. V. Ryzhikov, “Partial multiple mixing on subsequences may distinguish between automorphisms $T$ and $T^{-1}$”, Math. Notes, 74:6 (2003), 841–847 | DOI | MR | Zbl

[13] V. V. Ryzhikov, “Factors, rank, and embedding of a generic $\mathbb Z^n$-action in an $\mathbb R^n$-flow”, Russian Math. Surveys, 61:4 (2006), 786–787 | DOI | MR | Zbl

[14] F. Parreau, Facteurs disjoints des transformations melangeantes, 2023, arXiv: 2307.01562

[15] V. V. Ryzhikov, “Self-joinings and generic extensions of ergodic systems”, Funct. Anal. Appl., 57:3 (2023), 236–247 | DOI