@article{SM_2023_214_10_a4,
author = {V. V. Ryzhikov},
title = {Generic extensions of ergodic systems},
journal = {Sbornik. Mathematics},
pages = {1442--1457},
year = {2023},
volume = {214},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a4/}
}
V. V. Ryzhikov. Generic extensions of ergodic systems. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1442-1457. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a4/
[1] A. Stepin and S. Tikhonov, “Group actions: entropy, mixing, spectra and generic properties”, Topology, geometry, and dynamics. V. A. Rokhlin-memorial, Contemp. Math., 772, Amer. Math. Soc., Providence, RI, 2021, 311–324 | DOI | MR | Zbl
[2] L. Bowen, “Zero entropy is generic”, Entropy, 18:6 (2016), 220, 20 pp. | DOI | MR
[3] M. Schnurr, “Generic properties of extensions”, Ergodic Theory Dynam. Systems, 39:11 (2019), 3144–3168 | DOI | MR | Zbl
[4] E. Glasner and B. Weiss, “Relative weak mixing is generic”, Sci. China Math., 62:1 (2019), 69–72 | DOI | MR | Zbl
[5] T. Adams, “Genericity and rigidity for slow entropy transformations”, New York J. Math., 27 (2021), 393–416 | MR | Zbl
[6] E. Glasner, J.-P. Thouvenot and B. Weiss, “On some generic classes of ergodic measure preserving transformations”, Trans. Moscow Math. Soc., 82 (2021), 15–36 | DOI | MR | Zbl
[7] V. V. Ryzhikov, “Compact families and typical entropy invariants of measure-preserving actions”, Trans. Moscow Math. Soc., 82 (2021), 117–123 | DOI | MR | Zbl
[8] G. A. Veprev, “The scaling entropy of a generic action”, J. Math. Sci. (N.Y.), 261:5 (2022), 595–600 | DOI | MR | Zbl
[9] T. Austin, E. Glasner, J.-P. Thouvenot and B. Weiss, “An ergodic system is dominant exactly when it has positive entropy”, Ergodic Theory Dynam. Systems, 43:10 (2023), 3216–3230 | DOI
[10] A. G. Kushnirenko, “On metric invariants of entropy type”, Russian Math. Surveys, 22:5 (1967), 53–61 | DOI | MR | Zbl
[11] A. I. Bashtanov, “Generic mixing transformations are rank 1”, Math. Notes, 93:2 (2013), 209–216 | DOI | MR | Zbl
[12] V. V. Ryzhikov, “Partial multiple mixing on subsequences may distinguish between automorphisms $T$ and $T^{-1}$”, Math. Notes, 74:6 (2003), 841–847 | DOI | MR | Zbl
[13] V. V. Ryzhikov, “Factors, rank, and embedding of a generic $\mathbb Z^n$-action in an $\mathbb R^n$-flow”, Russian Math. Surveys, 61:4 (2006), 786–787 | DOI | MR | Zbl
[14] F. Parreau, Facteurs disjoints des transformations melangeantes, 2023, arXiv: 2307.01562
[15] V. V. Ryzhikov, “Self-joinings and generic extensions of ergodic systems”, Funct. Anal. Appl., 57:3 (2023), 236–247 | DOI