On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential
Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1415-1441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We are concerned with generalized eigenfunctions of the continuous (essential) spectrum for the Schrödinger operator with singular $\delta$-potential that has support on the sides of an angle in the plane. Operators of this kind appear in quantum-mechanical models for quantum state destruction of two point-interacting quantum particles of which one is reflected by a potential barrier. We propose an approach capable of constructing integral representations for eigenfunctions in terms of the solution of a functional-difference equation with spectral parameter. Solutions of this equation are studied by reduction to an integral equation, with the subsequent study of the spectral properties of the corresponding integral operator. We also construct an asymptotic formula for the eigenfunction at large distances. For this formula a physical interpretation from the point of view of wave scattering is given. Our approach can be used to deal with eigenfunctions in a broad class of related problems for the Schrödinger operator with singular potential. Bibliography: 17 titles.
Keywords: essential spectrum, eigenfunctions, integral representation, functional-difference equation, asymptotics.
@article{SM_2023_214_10_a3,
     author = {M. A. Lyalinov},
     title = {On eigenfunctions of the essential~spectrum of the model problem for the {Schr\"odinger} operator with singular potential},
     journal = {Sbornik. Mathematics},
     pages = {1415--1441},
     year = {2023},
     volume = {214},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1415
EP  - 1441
VL  - 214
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/
LA  - en
ID  - SM_2023_214_10_a3
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential
%J Sbornik. Mathematics
%D 2023
%P 1415-1441
%V 214
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/
%G en
%F SM_2023_214_10_a3
M. A. Lyalinov. On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1415-1441. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/

[1] R. Jost, “Mathematical analysis of a simple model for the stripping reaction”, Z. Angew. Math. Phys., 6 (1955), 316–326 | DOI | MR | Zbl

[2] S. Albeverio, “Analytische Lösung eines idealisierten Stripping- oder Beugungsproblems”, Helv. Phys. Acta, 40 (1967), 135–184 | Zbl

[3] M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $\delta'$-interaction on a circular conical surface”, Proc. A, 476:2241 (2020), 20200179, 23 pp. | DOI | MR | Zbl

[4] M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, European J. Appl. Math., 33:3 (2022), 538–559 | DOI | MR | Zbl

[5] M. A. Lyalinov, “Functional-difference equations and their link with perturbations of the Mehler operator”, Russ. J. Math. Phys., 29:3 (2022), 378–396 | DOI | MR | Zbl

[6] M. Gaudin and B. Derrida, “Solution exacte d'un problème modèle à trois corps. Etat lié”, J. Physique, 36:12 (1975), 1183–1197 | DOI

[7] L. D. Faddeev, R. M. Kashaev and A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality”, Comm. Math. Phys., 219:1 (2001), 199–219 | DOI | MR | Zbl

[8] A. Fedotov and F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Comm. Math. Phys., 334:2 (2015), 1083–1099 | DOI | MR | Zbl

[9] J. M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997; Advanced theory of diffraction by a semi-infinite impedance cone, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2014, 170 pp.

[10] M. A. Lyalinov and Ning Yan Zhu, “Acoustic scattering by a circular semi-transparent conical surface”, J. Engrg. Math., 59:4 (2007), 385–398 | DOI | MR | Zbl

[11] V. M. Babich, M. A. Lyalinov and V. E. Grikurov, Diffraction theory. The Sommerfeld-Malyuzhinets technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2008, 224 pp.

[12] J. B. Lawrie and A. C. King, “Exact solution to a class of functional difference equations with application to a moving contact line flow”, European J. Appl. Math., 5:2 (1994), 141–157 | DOI | MR | Zbl

[13] J. Behrndt, P. Exner and V. Lotoreichik, “Schrödinger operators with $\delta$- and $\delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015, 43 pp. | DOI | MR | Zbl

[14] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 4th ed., corr. and enl., Academic Press, New York–London–Toronto, 1980, xv+1160 pp. | MR | Zbl

[15] F. G. Mehler, “Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR | Zbl

[16] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992, x+341 pp. | DOI | MR | Zbl

[17] M. A. Lyalinov and N. Y. Zhu, St. Petersbg. Math. J., 33:2 (2022), 255–282 | DOI | MR | Zbl