@article{SM_2023_214_10_a3,
author = {M. A. Lyalinov},
title = {On eigenfunctions of the essential~spectrum of the model problem for the {Schr\"odinger} operator with singular potential},
journal = {Sbornik. Mathematics},
pages = {1415--1441},
year = {2023},
volume = {214},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/}
}
TY - JOUR AU - M. A. Lyalinov TI - On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential JO - Sbornik. Mathematics PY - 2023 SP - 1415 EP - 1441 VL - 214 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/ LA - en ID - SM_2023_214_10_a3 ER -
M. A. Lyalinov. On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1415-1441. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/
[1] R. Jost, “Mathematical analysis of a simple model for the stripping reaction”, Z. Angew. Math. Phys., 6 (1955), 316–326 | DOI | MR | Zbl
[2] S. Albeverio, “Analytische Lösung eines idealisierten Stripping- oder Beugungsproblems”, Helv. Phys. Acta, 40 (1967), 135–184 | Zbl
[3] M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $\delta'$-interaction on a circular conical surface”, Proc. A, 476:2241 (2020), 20200179, 23 pp. | DOI | MR | Zbl
[4] M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, European J. Appl. Math., 33:3 (2022), 538–559 | DOI | MR | Zbl
[5] M. A. Lyalinov, “Functional-difference equations and their link with perturbations of the Mehler operator”, Russ. J. Math. Phys., 29:3 (2022), 378–396 | DOI | MR | Zbl
[6] M. Gaudin and B. Derrida, “Solution exacte d'un problème modèle à trois corps. Etat lié”, J. Physique, 36:12 (1975), 1183–1197 | DOI
[7] L. D. Faddeev, R. M. Kashaev and A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality”, Comm. Math. Phys., 219:1 (2001), 199–219 | DOI | MR | Zbl
[8] A. Fedotov and F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Comm. Math. Phys., 334:2 (2015), 1083–1099 | DOI | MR | Zbl
[9] J. M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997; Advanced theory of diffraction by a semi-infinite impedance cone, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2014, 170 pp.
[10] M. A. Lyalinov and Ning Yan Zhu, “Acoustic scattering by a circular semi-transparent conical surface”, J. Engrg. Math., 59:4 (2007), 385–398 | DOI | MR | Zbl
[11] V. M. Babich, M. A. Lyalinov and V. E. Grikurov, Diffraction theory. The Sommerfeld-Malyuzhinets technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2008, 224 pp.
[12] J. B. Lawrie and A. C. King, “Exact solution to a class of functional difference equations with application to a moving contact line flow”, European J. Appl. Math., 5:2 (1994), 141–157 | DOI | MR | Zbl
[13] J. Behrndt, P. Exner and V. Lotoreichik, “Schrödinger operators with $\delta$- and $\delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015, 43 pp. | DOI | MR | Zbl
[14] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 4th ed., corr. and enl., Academic Press, New York–London–Toronto, 1980, xv+1160 pp. | MR | Zbl
[15] F. G. Mehler, “Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR | Zbl
[16] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992, x+341 pp. | DOI | MR | Zbl
[17] M. A. Lyalinov and N. Y. Zhu, St. Petersbg. Math. J., 33:2 (2022), 255–282 | DOI | MR | Zbl