On eigenfunctions of the essential~spectrum of the model problem for the Schr\"odinger operator with singular potential
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1415-1441
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We are concerned with generalized eigenfunctions of the continuous (essential) spectrum  for the Schrödinger operator with singular
$\delta$-potential that has support on the sides of an angle in the plane. Operators of this kind appear in quantum-mechanical models
for quantum state destruction of two point-interacting quantum particles of which one is reflected by a potential barrier. We propose an approach capable of constructing integral representations for eigenfunctions in terms of the solution of a functional-difference equation with spectral parameter. Solutions of this equation are studied by reduction to an integral equation, with the subsequent study of the spectral properties of the corresponding integral operator. We also construct an asymptotic formula for the eigenfunction at large
distances. For this formula a physical interpretation from the point of view of wave scattering is given.
Our approach can be used to deal with eigenfunctions in a broad class of related problems for the Schrödinger operator with singular potential.
Bibliography: 17 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
essential spectrum, eigenfunctions, integral representation, functional-difference equation, asymptotics.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_10_a3,
     author = {M. A. Lyalinov},
     title = {On eigenfunctions of the essential~spectrum of the model problem for the {Schr\"odinger} operator with singular potential},
     journal = {Sbornik. Mathematics},
     pages = {1415--1441},
     publisher = {mathdoc},
     volume = {214},
     number = {10},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/}
}
                      
                      
                    TY - JOUR AU - M. A. Lyalinov TI - On eigenfunctions of the essential~spectrum of the model problem for the Schr\"odinger operator with singular potential JO - Sbornik. Mathematics PY - 2023 SP - 1415 EP - 1441 VL - 214 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/ LA - en ID - SM_2023_214_10_a3 ER -
%0 Journal Article %A M. A. Lyalinov %T On eigenfunctions of the essential~spectrum of the model problem for the Schr\"odinger operator with singular potential %J Sbornik. Mathematics %D 2023 %P 1415-1441 %V 214 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/ %G en %F SM_2023_214_10_a3
M. A. Lyalinov. On eigenfunctions of the essential~spectrum of the model problem for the Schr\"odinger operator with singular potential. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1415-1441. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a3/
