Complete bipartite graphs flexible in the plane
Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1390-1414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete bipartite graph $K_{3,3}$, considered as a planar linkage with joints at the vertices and with rods as edges, is in general inflexible, that is, it admits only motions as a whole. Two types of its paradoxical mobility were found by Dixon in 1899. Later on, in a series of papers by several different authors the question of the flexibility of $K_{m,n}$ was solved for almost all pairs $(m,n)$. We solve it for all complete bipartite graphs in the Euclidean plane, as well as on the sphere and hyperbolic plane. We give independent self-contained proofs without extensive computations, which are almost the same in the Euclidean, hyperbolic and spherical cases. Bibliography: 11 titles.
Keywords: complete bipartite graph, flexibility in the plane, algebraic curves.
@article{SM_2023_214_10_a2,
     author = {M. D. Kovalev and S. Yu. Orevkov},
     title = {Complete bipartite graphs flexible in the plane},
     journal = {Sbornik. Mathematics},
     pages = {1390--1414},
     year = {2023},
     volume = {214},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/}
}
TY  - JOUR
AU  - M. D. Kovalev
AU  - S. Yu. Orevkov
TI  - Complete bipartite graphs flexible in the plane
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1390
EP  - 1414
VL  - 214
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/
LA  - en
ID  - SM_2023_214_10_a2
ER  - 
%0 Journal Article
%A M. D. Kovalev
%A S. Yu. Orevkov
%T Complete bipartite graphs flexible in the plane
%J Sbornik. Mathematics
%D 2023
%P 1390-1414
%V 214
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/
%G en
%F SM_2023_214_10_a2
M. D. Kovalev; S. Yu. Orevkov. Complete bipartite graphs flexible in the plane. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1390-1414. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/

[1] O. Bottema, “Die Bahnkurven eines merkwürdigen Zwölfstabgetriebes”, Österr. Ing.-Arch., 14 (1960), 218–222 | Zbl

[2] A. C. Dixon, “On certain deformable frameworks”, Messenger Math., 29 (1899/1900), 1–21 | Zbl

[3] M. Gallet, G. Grasegger, J. Legerský and J. Schicho, “On the existence of paradoxical motions of generically rigid graphs on the sphere”, SIAM J. Discrete Math., 35:1 (2021), 325–361 | DOI | MR | Zbl

[4] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl

[5] G. Grasegger, J. Legerský and J. Schicho, “On the classification of motions of paradoxically movable graphs”, J. Comput. Geom., 11:1 (2020), 548–575 | DOI | MR | Zbl

[6] M. D. Kovalev, “Four-bar linkage: reducibility of the configuration space and transfer function”, Mech. Solids, 56:8 (2021), 1550–1558 | DOI | DOI | Zbl

[7] N. I. Levitskiĭ, Theory of mechanisms and machines, 2nd ed., rev. and augm., Nauka, Moscow, 1990, 592 pp. (Russian) | MR

[8] H. Maehara and N. Tokushige, “When does a planar bipartite framework admit a continuous deformation?”, Theoret. Comput. Sci., 263:1–2 (2001), 345–354 | DOI | MR | Zbl

[9] D. Walter and M. L. Husty, “On a nine-bar linkage, its possible configurations and conditions for paradoxical mobility”, Proceedings of twelfth world congress on mechanism and machine science, IFToMM 2007 (Besançon 2007), 2007, 1–6

[10] W. Whiteley, “Infinitesimal motions of a bipartite framework”, Pacific J. Math., 110:1 (1984), 233–255 | DOI | MR | Zbl

[11] W. Wunderlich, “On deformable nine-bar linkages with six triple joints”, Indag. Math. (N.S.), 79:3 (1976), 257–262 | DOI | MR | Zbl