Complete bipartite graphs flexible in the plane
Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1390-1414

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete bipartite graph $K_{3,3}$, considered as a planar linkage with joints at the vertices and with rods as edges, is in general inflexible, that is, it admits only motions as a whole. Two types of its paradoxical mobility were found by Dixon in 1899. Later on, in a series of papers by several different authors the question of the flexibility of $K_{m,n}$ was solved for almost all pairs $(m,n)$. We solve it for all complete bipartite graphs in the Euclidean plane, as well as on the sphere and hyperbolic plane. We give independent self-contained proofs without extensive computations, which are almost the same in the Euclidean, hyperbolic and spherical cases. Bibliography: 11 titles.
Keywords: complete bipartite graph, flexibility in the plane, algebraic curves.
@article{SM_2023_214_10_a2,
     author = {M. D. Kovalev and S. Yu. Orevkov},
     title = {Complete bipartite graphs flexible in the plane},
     journal = {Sbornik. Mathematics},
     pages = {1390--1414},
     publisher = {mathdoc},
     volume = {214},
     number = {10},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/}
}
TY  - JOUR
AU  - M. D. Kovalev
AU  - S. Yu. Orevkov
TI  - Complete bipartite graphs flexible in the plane
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1390
EP  - 1414
VL  - 214
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/
LA  - en
ID  - SM_2023_214_10_a2
ER  - 
%0 Journal Article
%A M. D. Kovalev
%A S. Yu. Orevkov
%T Complete bipartite graphs flexible in the plane
%J Sbornik. Mathematics
%D 2023
%P 1390-1414
%V 214
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/
%G en
%F SM_2023_214_10_a2
M. D. Kovalev; S. Yu. Orevkov. Complete bipartite graphs flexible in the plane. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1390-1414. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/