@article{SM_2023_214_10_a2,
author = {M. D. Kovalev and S. Yu. Orevkov},
title = {Complete bipartite graphs flexible in the plane},
journal = {Sbornik. Mathematics},
pages = {1390--1414},
year = {2023},
volume = {214},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/}
}
M. D. Kovalev; S. Yu. Orevkov. Complete bipartite graphs flexible in the plane. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1390-1414. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a2/
[1] O. Bottema, “Die Bahnkurven eines merkwürdigen Zwölfstabgetriebes”, Österr. Ing.-Arch., 14 (1960), 218–222 | Zbl
[2] A. C. Dixon, “On certain deformable frameworks”, Messenger Math., 29 (1899/1900), 1–21 | Zbl
[3] M. Gallet, G. Grasegger, J. Legerský and J. Schicho, “On the existence of paradoxical motions of generically rigid graphs on the sphere”, SIAM J. Discrete Math., 35:1 (2021), 325–361 | DOI | MR | Zbl
[4] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl
[5] G. Grasegger, J. Legerský and J. Schicho, “On the classification of motions of paradoxically movable graphs”, J. Comput. Geom., 11:1 (2020), 548–575 | DOI | MR | Zbl
[6] M. D. Kovalev, “Four-bar linkage: reducibility of the configuration space and transfer function”, Mech. Solids, 56:8 (2021), 1550–1558 | DOI | DOI | Zbl
[7] N. I. Levitskiĭ, Theory of mechanisms and machines, 2nd ed., rev. and augm., Nauka, Moscow, 1990, 592 pp. (Russian) | MR
[8] H. Maehara and N. Tokushige, “When does a planar bipartite framework admit a continuous deformation?”, Theoret. Comput. Sci., 263:1–2 (2001), 345–354 | DOI | MR | Zbl
[9] D. Walter and M. L. Husty, “On a nine-bar linkage, its possible configurations and conditions for paradoxical mobility”, Proceedings of twelfth world congress on mechanism and machine science, IFToMM 2007 (Besançon 2007), 2007, 1–6
[10] W. Whiteley, “Infinitesimal motions of a bipartite framework”, Pacific J. Math., 110:1 (1984), 233–255 | DOI | MR | Zbl
[11] W. Wunderlich, “On deformable nine-bar linkages with six triple joints”, Indag. Math. (N.S.), 79:3 (1976), 257–262 | DOI | MR | Zbl