Mots-clés : Hadamard space.
@article{SM_2023_214_10_a1,
author = {A. B{\cyryo}rd{\cyryo}llima},
title = {On a~weak topology for {Hadamard} spaces},
journal = {Sbornik. Mathematics},
pages = {1373--1389},
year = {2023},
volume = {214},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a1/}
}
A. Bёrdёllima. On a weak topology for Hadamard spaces. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1373-1389. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a1/
[1] A. D. Alexandrov, “A theorem on triangles in a metric space and some of its applications”, Tr. Mat. Inst. Steklova, 38, Acad. Sci. USSR, Moscow, 1951, 5–23 (Russian) | MR | Zbl
[2] S. Baratella and Ng Siu-Ah, “A nonstandard proof of the Eberlein-Šmulian theorem”, Proc. Amer. Math. Soc., 131:10 (2003), 3177–3180 | DOI | MR | Zbl
[3] A. Bërdëllima, Investigations in Hadamard spaces, Ph.D. thesis, Georg-August-Univ., Göttingen, 2020, 131 pp. https://d-nb.info/1240476078/34
[4] I. D. Berg and I. G. Nikolaev, “Quasilinearization and curvature of Aleksandrov spaces”, Geom. Dedicata, 133 (2008), 195–218 | DOI | MR | Zbl
[5] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999, xxii+643 pp. | DOI | MR | Zbl
[6] D. Burago, Yu. Burago and S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl
[7] M. Bačák, Convex analysis and optimization in Hadamard spaces, De Gruyter Ser. Nonlinear Anal. Appl., 22, De Gruyter, Berlin, 2014, viii+185 pp. | DOI | MR | Zbl
[8] M. Bačák, Old and new challenges in Hadamard spaces, arXiv: 1807.01355
[9] R. Espínola and A. Fernández-León, “$\mathrm{CAT}(\kappa)$-spaces, weak convergence and fixed points”, J. Math. Anal. Appl., 353:1 (2009), 410–427 | DOI | MR | Zbl
[10] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Transl. from the French, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl
[11] M. L. Gromov, “$\mathrm{CAT}(\kappa)$-spaces: construction and concentration”, J. Math. Sci. (N.Y.), 119:2 (2004), 178–200 | DOI | MR | Zbl
[12] J. Jost, “Equilibrium maps between metric spaces”, Calc. Var. Partial Differential Equations, 2 (1994), 173–204 | DOI | MR | Zbl
[13] B. A. Kakavandi, “Weak topologies in complete $CAT(0)$ metric spaces”, Proc. Amer. Math. Soc., 141:3 (2013), 1029–1039 | DOI | MR | Zbl
[14] M. Kell, “Uniformly convex metric spaces”, Anal. Geom. Metr. Spaces, 2:1 (2014), 359–380 | DOI | MR | Zbl
[15] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto–New York–London, 1955, xiv+298 pp. | MR | Zbl
[16] Teck-Cheong Lim, “Remarks on some fixed point theorems”, Proc. Amer. Math. Soc., 60 (1976), 179–182 | DOI | MR | Zbl
[17] A. Lytchak and A. Petrunin, “Weak topology on $\mathrm{CAT}(0)$ spaces”, Israel J. Math., 255:2 (2023), 763–781 | DOI | MR | Zbl
[18] B. Mendelson, Introduction to topology, 3rd ed., Allyn and Bacon, Inc., Boston, MA, 1975, ix+206 pp. | MR | Zbl
[19] Ph. Miller, A. Bërdëllima and M. Wardetzky, Weak topologies for unbounded nets in $\mathrm{CAT}(0)$ spaces, arXiv: 2204.01291
[20] N. Monod, “Superrigidity for irreducible lattices and geometric splitting”, J. Amer. Math. Soc., 19:4 (2006), 781–814 | DOI | MR | Zbl
[21] J. R. Munkres, Topology, 2nd ed., Prentice Hail, Inc., Upper Saddle River, NJ, 2000, xvi+537 pp. | MR | Zbl
[22] S. Alexander, V. Kapovitch and A. Petrunin, An invitation to Alexandrov geometry. $\mathrm{CAT}(0)$ spaces, SpringerBriefs Math., Springer, Cham, 2019, xii+88 pp. | DOI | MR | Zbl
[23] E. N. Sosov, “Analogs of weak convergence in a special metric space”, Russian Math. (Iz. VUZ), 48:5 (2004), 79–83 | MR | Zbl
[24] R. Whitley, “An elementary proof of the Eberlein-Šmulian theorem”, Math. Ann., 172:2 (1967), 116–118 | DOI | MR | Zbl