@article{SM_2023_214_10_a0,
author = {A. A. Ardentov and E. M. Artemova},
title = {Abnormal extremals in the {sub-Riemannian} problem for a~general model of a~robot with a~trailer},
journal = {Sbornik. Mathematics},
pages = {1351--1372},
year = {2023},
volume = {214},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_10_a0/}
}
TY - JOUR AU - A. A. Ardentov AU - E. M. Artemova TI - Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer JO - Sbornik. Mathematics PY - 2023 SP - 1351 EP - 1372 VL - 214 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_10_a0/ LA - en ID - SM_2023_214_10_a0 ER -
A. A. Ardentov; E. M. Artemova. Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer. Sbornik. Mathematics, Tome 214 (2023) no. 10, pp. 1351-1372. http://geodesic.mathdoc.fr/item/SM_2023_214_10_a0/
[1] R. Montgomery, “Abnormal optimal controls and open problems in nonholonomic steering”, IFAC Proc. Vol., 25:13 (1992), 121–126 | DOI
[2] D. Barilari, U. Boscain, E. Le Donne and M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl
[3] V. N. Berestovskii and I. A. Zubareva, “Abnormal extremals of left-invariant sub-Finsler quasimetrics on four-dimensional Lie groups”, Siberian Math. J., 62:3 (2021), 383–399 | DOI | MR | Zbl
[4] F. Pelletier and L. Bouche, “Abnormality of trajectory in sub-Riemannian structure”, Geometry in nonlinear control and differential inclusions (Warsaw 1993), Banach Center Publ., 32, Polish Acad. Sci., Inst. Math., Warsaw, 1995, 301–317 | DOI | MR | Zbl
[5] H. J. Sussmann, “A cornucopia of four-dimensional abnormal sub-Riemannian minimizers”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser Verlag, Basel, 1996, 341–364 | DOI | MR | Zbl
[6] Yu. L. Sachkov and E. F. Sachkova, “The structure of abnormal extremals in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$”, Sb. Math., 211:10 (2020), 1460–1485 | DOI | MR | Zbl
[7] B. Bonnard and E. Trélat, “On the role of abnormal minimizers in sub-Riemannian geometry”, Ann. Fac. Sci. Toulouse Math. (6), 10:3 (2001), 405–491 | DOI | MR | Zbl
[8] A. A. Agrachev and A. V. Sarychev, “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 13:6 (1996), 635–690 | DOI | MR | Zbl
[9] A. A. Agrachev and A. V. Sarychev, “Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity”, ESAIM Control Optim. Calc. Var., 4 (1999), 377–403 | DOI | MR | Zbl
[10] A. Agrachev and J.-P. Gauthier, “On the subanalyticity of Carnot-Caratheodory distances”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 18:3 (2001), 359–382 | DOI | MR | Zbl
[11] Yu. L. Sachkov and A. Yu. Popov, “Sub-Riemannian Engel sphere”, Dokl. Math., 104:2 (2021), 301–305 | DOI | MR | Zbl
[12] A. Ardentov and E. Hakavuori, “Cut time in the sub-Riemannian problem on the Cartan group”, ESAIM Control Optim. Calc. Var., 28 (2022), 12, 19 pp. | DOI | MR | Zbl
[13] A. Agrachev, B. Bonnard, M. Chyba and I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl
[14] R. S. Strichartz, “Sub-Riemannian geometry”, J. Differential Geom., 24:2 (1986), 221–263 | DOI | MR | Zbl
[15] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | DOI | MR | Zbl
[16] R. Monti, “The regularity problem for sub-Riemannian geodesics”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, 313–332 | DOI | MR | Zbl
[17] E. Hakavuori and E. Le Donne, “Non-minimality of corners in subriemannian geometry”, Invent. Math., 206:3 (2016), 693–704 | DOI | MR | Zbl
[18] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control Theory Optim., II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl
[19] M. Chyba and S. Sekhavat, “Time optimal paths for a mobile robot with one trailer”, Proceedings 1999 IEEE/RSJ International conference on intelligent robots and systems. Human and environment friendly robots with high intelligence and emotional quotients, v. 3, IEEE, 1999, 1669–1674 | DOI
[20] H. Chitsaz, “On time-optimal trajectories for a car-like robot with one trailer”, 2013 Proceedings of the conference on control and its applications (CT), SIAM, 2013, 114–120 | DOI
[21] I. Moiseev and Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[22] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl
[23] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl
[24] A. A. Ardentov and Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl
[25] A. A. Ardentov, “Controlling of a mobile robot with a trailer and its nilpotent approximation”, Regul. Chaotic Dyn., 21:7–8 (2016), 775–791 | DOI | MR | Zbl
[26] A. A. Ardentov and A. P. Mashtakov, “Control of a mobile robot with a trailer based on nilpotent approximation”, Autom. Remote Control, 82:1 (2021), 73–92 | DOI | MR | Zbl
[27] A. V. Borisov, A. A. Kilin and I. S. Mamaev, “On the Hadamard-Hamel problem and the dynamics of wheeled vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl
[28] F. Lamiraux, S. Sekhavat and J.-P. Laumond, “Motion planning and control for Hilare pulling a trailer”, IEEE Trans. Robot. Autom., 15:4 (1999), 640–652 | DOI
[29] P. K. Rashevskii, “Connectivity of two arbitrary points in a totally unholonomic space by an admissible line”, Uchenye Zapiski Mos. Gos. Ped. Inst. Ser. Fiz. Mat. Nauk, 3:2 (1938), 83–94 (Russian)
[30] A. Ardentov, G. Bor, E. Le Donne, R. Montgomery and Yu. Sachkov, “Bicycle paths, elasticae and sub-Riemannian geometry”, Nonlinearity, 34:7 (2021), 4661–4683 | DOI | MR | Zbl
[31] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl
[32] A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp. | DOI | MR | Zbl
[33] E. Jahnke, F. Emde and F. Lösch, Tafeln höherer Funktionen. (Tables of higher functions.), 6. Aufl., B. G. Teubner, Stuttgart; McGraw-Hill Book Co., Inc., New York–Toronto–London, 1960, xiv+318 pp. | MR | Zbl