@article{SM_2022_213_9_a4,
author = {I. A. Tlyustangelov},
title = {Proper cyclic symmetries of multidimensional continued fractions},
journal = {Sbornik. Mathematics},
pages = {1290--1317},
year = {2022},
volume = {213},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/}
}
I. A. Tlyustangelov. Proper cyclic symmetries of multidimensional continued fractions. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/
[1] F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1895 (1895), 357–359 | Zbl
[2] J.-L. Lagrange, “Additions au mémoire sur la résolution des équations numériques”, Mem. Acad. Roy. Sci. et Belles-lettres de Berlin, 24 (1770), 581–652
[3] A. Ya. Khinchin, Continued fractions, 4th ed., Nauka, Moscow, 1978, 112 pp. ; English transl. of 3d ed., Reprint of the 1964 ed., Dover Publications, Inc., Mineola, NY, 1997, xii+95 pp. | MR | MR | Zbl
[4] O. N. German and I. A. Tlyustangelov, “Palindromes and periodic continued fractions”, Mosc. J. Comb. Number Theory, 6:2–3 (2016), 233–252 | MR | Zbl
[5] O. N. German and I. A. Tlyustangelov, “Symmetries of a two-dimensional continued fraction”, Izv. Ross. Akad. Nauk Ser. Mat., 85:4 (2021), 53–68 ; English transl. in Izv. Math., 85:4 (2021), 666–680 | DOI | MR | Zbl | DOI
[6] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Singularities of smooth maps with additional structures, Tr. Mat. Inst. Steklova, 209, Nauka, Fizmatlit, Moscow, 1995, 143–166 ; English transl. in Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl
[7] É. Galois, “Analyse algébrique. Demonstration d'un théorème sur les fractions continues périodiques”, Ann. Math. Pures Appl. [Ann. Gergonne], 19 (1828/29), 294–301 | MR
[8] A.-M. Legendre, Théorie des nombres, v. 1, 2, 3 ed., Firmin Didot Frères, Libraires, Paris, 1830, xxiv+396 pp., xv+463 pp. | Zbl
[9] O. Perron, Die Lehre von den Kettenbrüchen, v. 1, Elementare Kettenbrüche, 3. Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954, vi+194 pp. | MR | Zbl
[10] M. Kraitchik, Théorie des nombres, v. 2, Analyse indéterminée du second degré et factorisation, Gauthier-Villars, Paris, 1926, iv+252 pp. | Zbl
[11] D. H. Lehmer, “A note on trigonometric algebraic numbers”, Amer. Math. Monthly, 40:3 (1933), 165–166 | DOI | MR | Zbl