Proper cyclic symmetries of multidimensional continued fractions
Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that palindromic continued fractions exist in an arbitrary dimension. For dimension $n=4$ we also prove a criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry. Klein polyhedra are considered as multidimensional generalizations of continued fractions. Bibliography: 11 titles.
Keywords: Klein polyhedron, cyclic extension.
@article{SM_2022_213_9_a4,
     author = {I. A. Tlyustangelov},
     title = {Proper cyclic symmetries of multidimensional continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1290--1317},
     year = {2022},
     volume = {213},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/}
}
TY  - JOUR
AU  - I. A. Tlyustangelov
TI  - Proper cyclic symmetries of multidimensional continued fractions
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1290
EP  - 1317
VL  - 213
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/
LA  - en
ID  - SM_2022_213_9_a4
ER  - 
%0 Journal Article
%A I. A. Tlyustangelov
%T Proper cyclic symmetries of multidimensional continued fractions
%J Sbornik. Mathematics
%D 2022
%P 1290-1317
%V 213
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/
%G en
%F SM_2022_213_9_a4
I. A. Tlyustangelov. Proper cyclic symmetries of multidimensional continued fractions. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/

[1] F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1895 (1895), 357–359 | Zbl

[2] J.-L. Lagrange, “Additions au mémoire sur la résolution des équations numériques”, Mem. Acad. Roy. Sci. et Belles-lettres de Berlin, 24 (1770), 581–652

[3] A. Ya. Khinchin, Continued fractions, 4th ed., Nauka, Moscow, 1978, 112 pp. ; English transl. of 3d ed., Reprint of the 1964 ed., Dover Publications, Inc., Mineola, NY, 1997, xii+95 pp. | MR | MR | Zbl

[4] O. N. German and I. A. Tlyustangelov, “Palindromes and periodic continued fractions”, Mosc. J. Comb. Number Theory, 6:2–3 (2016), 233–252 | MR | Zbl

[5] O. N. German and I. A. Tlyustangelov, “Symmetries of a two-dimensional continued fraction”, Izv. Ross. Akad. Nauk Ser. Mat., 85:4 (2021), 53–68 ; English transl. in Izv. Math., 85:4 (2021), 666–680 | DOI | MR | Zbl | DOI

[6] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Singularities of smooth maps with additional structures, Tr. Mat. Inst. Steklova, 209, Nauka, Fizmatlit, Moscow, 1995, 143–166 ; English transl. in Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl

[7] É. Galois, “Analyse algébrique. Demonstration d'un théorème sur les fractions continues périodiques”, Ann. Math. Pures Appl. [Ann. Gergonne], 19 (1828/29), 294–301 | MR

[8] A.-M. Legendre, Théorie des nombres, v. 1, 2, 3 ed., Firmin Didot Frères, Libraires, Paris, 1830, xxiv+396 pp., xv+463 pp. | Zbl

[9] O. Perron, Die Lehre von den Kettenbrüchen, v. 1, Elementare Kettenbrüche, 3. Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954, vi+194 pp. | MR | Zbl

[10] M. Kraitchik, Théorie des nombres, v. 2, Analyse indéterminée du second degré et factorisation, Gauthier-Villars, Paris, 1926, iv+252 pp. | Zbl

[11] D. H. Lehmer, “A note on trigonometric algebraic numbers”, Amer. Math. Monthly, 40:3 (1933), 165–166 | DOI | MR | Zbl