Proper cyclic symmetries of multidimensional continued fractions
Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that palindromic continued fractions exist in an arbitrary dimension. For dimension $n=4$ we also prove a criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry. Klein polyhedra are considered as multidimensional generalizations of continued fractions. Bibliography: 11 titles.
Keywords: Klein polyhedron, cyclic extension.
@article{SM_2022_213_9_a4,
     author = {I. A. Tlyustangelov},
     title = {Proper cyclic symmetries of multidimensional continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1290--1317},
     publisher = {mathdoc},
     volume = {213},
     number = {9},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/}
}
TY  - JOUR
AU  - I. A. Tlyustangelov
TI  - Proper cyclic symmetries of multidimensional continued fractions
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1290
EP  - 1317
VL  - 213
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/
LA  - en
ID  - SM_2022_213_9_a4
ER  - 
%0 Journal Article
%A I. A. Tlyustangelov
%T Proper cyclic symmetries of multidimensional continued fractions
%J Sbornik. Mathematics
%D 2022
%P 1290-1317
%V 213
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/
%G en
%F SM_2022_213_9_a4
I. A. Tlyustangelov. Proper cyclic symmetries of multidimensional continued fractions. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/