Proper cyclic symmetries of multidimensional continued fractions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that palindromic continued fractions exist in an arbitrary dimension. For dimension $n=4$ we also prove a criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry. Klein polyhedra are considered as multidimensional generalizations of continued fractions. 
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Klein polyhedron, cyclic extension.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_9_a4,
     author = {I. A. Tlyustangelov},
     title = {Proper cyclic symmetries of multidimensional continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1290--1317},
     publisher = {mathdoc},
     volume = {213},
     number = {9},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/}
}
                      
                      
                    I. A. Tlyustangelov. Proper cyclic symmetries of multidimensional continued fractions. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1290-1317. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a4/
