Mots-clés : Solomyak-type estimates
@article{SM_2022_213_9_a3,
author = {F. A. Sukochev and D. V. Zanin},
title = {Solomyak-type eigenvalue estimates for the {Birman-Schwinger} operator},
journal = {Sbornik. Mathematics},
pages = {1250--1289},
year = {2022},
volume = {213},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a3/}
}
F. A. Sukochev; D. V. Zanin. Solomyak-type eigenvalue estimates for the Birman-Schwinger operator. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1250-1289. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a3/
[1] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp. | MR | Zbl
[2] S. V. Astashkin, F. A. Sukochev and C. P. Wong, “Distributionally concave symmetric spaces and uniqueness of symmetric structure”, Adv. Math., 232:1 (2013), 399–431 | DOI | MR | Zbl
[3] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[4] M. Š. Birman and V. V. Borzov, “The asymptotic behaviour of the discrete spectrum of certain singular differential operators”, Probl. Mat. Fiz., 5, Leningrad University Publishing House, Leningrad, 1971, 24–38 (Russian) | MR | Zbl
[5] M. Š. Birman and M. Z. Solomyak, “Piecewise-polynomial approximations of functions of the classes $W_p^\alpha$”, Mat. Sb. (N.S.), 73(115):3 (1967), 331–355 ; English transl. in Sb. Math., 2:3 (1967), 295–317 | MR | Zbl | DOI
[6] M. Sh. Birman and M. Z. Solomyak, “Leading term in the asymptotic spectral formula for ‘nonsmooth’ elliptic problems”, Funktsional. Anal. i Prilozhen., 4:4 (1970), 1–13 ; English transl. in Funct. Anal. Appl., 4:4 (1970), 265–275 | MR | Zbl | DOI
[7] M. Sh. Birman and M. Z. Solomyak, “Spectral asymptotics of nonsmooth elliptic operators. I”, Tr. Mosk. Mat. Obshch., 27, Moscow University Publishing House, Moscow, 1972, 3–52 ; II, 28, 1973, 3–34 ; English transl. in Trans. Moscow Math. Soc., 27, Amer. Math. Soc., Providence, RI, 1975, 1–52; II, 28, 1975, 1–32 | MR | Zbl | Zbl
[8] M. Š. Birman and M. Z. Solomjak, “Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory”, Tenth Mathematical Summer School (Katsiveli/Nalchik 1972), Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1974, 5–189 ; English transl., Amer. Math. Soc. Transl. Ser. 2, 114, Amer. Math. Soc., Providence, RI, 1980, viii+132 pp. | MR | Zbl | MR | Zbl
[9] M. Sh. Birman and M. Z. Solomyak, “Estimates of singular numbers of integral operators”, Uspekhi Mat. Nauk, 32:1(193) (1977), 17–84 ; English transl. in Russian Math. Surveys, 32:1 (1977), 15–89 | MR | Zbl | DOI
[10] M. Sh. Birman and M. Z. Solomyak, “Schrödinger operator. Estimates for number of bound states as function-theoretical problem”, Spectral theory of operators (Novgorod 1989), Amer. Math. Soc. Transl. Ser. 2, 150, Soviet Regional Conf., Amer. Math. Soc., Providence, RI, 1992, 1–54 | DOI | MR | Zbl
[11] E. DiBenedetto, Real analysis, Birkhäuser Adv. Texts Basler Lehrbucher, 2nd ed., Birkhäuser/Springer, New York, 2016, xxxii+596 pp. | DOI | MR | Zbl
[12] A. L. Carey, A. Rennie, A. Sedaev and F. Sukochev, “The Dixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249:2 (2007), 253–283 | DOI | MR | Zbl
[13] M. Cwikel, “Weak type estimates for singular values and the number of bound states of Schrödinger operators”, Ann. of Math. (2), 106:1 (1977), 93–100 | DOI | MR | Zbl
[14] R. L. Frank, “Cwikel's theorem and the CLR inequality”, J. Spectr. Theory, 4:1 (2014), 1–21 | DOI | MR | Zbl
[15] R. L. Frank and A. Laptev, “Bound on the number of negative eigenvalues of two-dimensional Schrödinger operators on domains”, Algebra i Analiz, 30:3 (2018), 250–272 ; St. Petersburg Math. J., 30:3 (2019), 573–589 | MR | Zbl | DOI
[16] V. Glaser, H. Grosse and A. Martin, “Bounds on the number of eigenvalues of the Schrödinger operator”, Comm. Math. Phys., 59:2 (1978), 197–212 | DOI | MR | Zbl
[17] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Nauka, Moscow, 1965, 448 pp. ; English transl., Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | Zbl | MR | Zbl
[18] A. Grigor'yan and N. Nadirashvili, “Negative eigenvalues of two-dimensional Schrödinger operators”, Arch. Ration. Mech. Anal., 217:3 (2015), 975–1028 | DOI | MR | Zbl
[19] S. Kobayashi, Transformation groups in differential geometry, Classics Math., Reprint of the 1972 ed., Springer-Verlag, Berlin, 1995, viii+182 pp. | DOI | MR | Zbl
[20] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, Fizmatgiz, Moscow, 1958, 271 pp. ; English transl., P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | Zbl | MR | Zbl
[21] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of linear operators, Nauka, Moscow, 1978, 400 pp. ; English transl., Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | Zbl | MR | Zbl
[22] G. Levitina, F. Sukochev and D. Zanin, “Cwikel estimates revisited”, Proc. Lond. Math. Soc. (3), 120:2 (2020), 265–304 | DOI | MR | Zbl
[23] S. Lord, F. Sukochev and D. Zanin, “A last theorem of Kalton and finiteness of Connes' integral”, J. Funct. Anal., 279:7 (2020), 108664, 54 pp. | DOI | MR | Zbl
[24] S. Lord, F. Sukochev and D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp. | DOI | MR | Zbl
[25] V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Leningrad University Publishing House, Leningrad, 1985, 416 pp. ; English transl. of 2nd rev. ed., Grundlehren Math. Wiss., 342, Springer, Heidelberg, 2011, xxviii+866 pp. | MR | Zbl | DOI | MR | Zbl
[26] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000, xiv+357 pp. | MR | Zbl
[27] T. Ozawa, “On critical cases of Sobolev's inequalities”, J. Funct. Anal., 127:2 (1995), 259–269 | DOI | MR | Zbl
[28] S. I. Pohozaev, “On Sobolev's embedding theorem for $pl = n$”, Dokl. Nauchno-Tekhn. Konferentsii Mosk. Ènergeticheskogo Inst., Moscow Institute of Power Engineering, Moscow, 1965, 158–170 (Russian)
[29] A. Pushnitski, “The Birman-Schwinger principle on the essential spectrum”, J. Funct. Anal., 261:7 (2011), 2053–2081 | DOI | MR | Zbl
[30] G. V. Rozenblum, “Distribution of the discrete spectrum for singular differential operators”, Dokl. Akad. Nauk SSSR, 202 (1972), 1012–1015 ; English transl. in Soviet Math. Dokl., 13 (1972), 245–249 | MR | Zbl
[31] G. Rozenblum, “Eigenvalues of singular measures and Connes' noncommutative integration”, J. Spectr. Theory, 12:1 (2022), 259–300 ; arXiv: 2103.02067 | DOI | MR | Zbl
[32] M. Ruzhansky and V. Turunen, Pseudo-differential operators and symmetries. Background analysis and advanced topics, Pseudo Diff. Oper., 2, Birkhäuser Verlag, Basel, 2010, xiv+709 pp. | DOI | MR | Zbl
[33] E. Shargorodsky, “On negative eigenvalues of two-dimensional Schrödinger operators”, Proc. Lond. Math. Soc. (3), 108:2 (2014), 441–483 | DOI | MR | Zbl
[34] B. Simon, “Analysis with weak trace ideals and the number of bound states of Schrödinger operators”, Trans. Amer. Math. Soc., 224:2 (1976), 367–380 | DOI | MR | Zbl
[35] B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp. | DOI | MR | Zbl
[36] M. Solomyak, “Piecewise-polynomial approximation of functions from $H^\ell((0,1)^d)$, $2\ell=d$, and applications to the spectral theory of the Schrödinger operators”, Israel J. Math., 86:1–3 (1994), 253–275 | DOI | MR | Zbl
[37] M. Solomyak, “Spectral problems related to the critical exponent in the Sobolev embedding theorem”, Proc. Lond. Math. Soc. (3), 71:1 (1995), 53–75 | DOI | MR | Zbl
[38] M. Solomyak, “On the discrete spectrum of a class of problems involving the Neumann Laplacian in unbounded domains”, Voronezh Winter Mathematical Schools, Amer. Math. Soc. Transl. Ser. 2, 184, Adv. Math. Sci., 37, Amer. Math. Soc., Providence, RI, 1998, 233–251 | DOI | MR | Zbl
[39] F. Sukochev and D. Zanin, “A $C^*$-algebraic approach to the principal symbol. I”, J. Operator Theory, 80:2 (2018), 481–522 | DOI | MR | Zbl
[40] F. Sukochev and D. Zanin, “Which traces are spectral?”, Adv. Math., 252 (2014), 406–428 | DOI | MR | Zbl
[41] F. Sukochev and D. Zanin, Optimality of Cwikel-Solomyak estimates, 2022, arXiv: 2208.05084
[42] N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17:5 (1967), 473–483 | DOI | MR | Zbl
[43] T. Weidl, “Another look at Cwikel's inequality”, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 189, Adv. Math. Sci., 41, Amer. Math. Soc., Providence, RI, 1999, 247–254 | DOI | MR | Zbl
[44] V. I. Yudovich, “Some estimates connected with integral operators and with solutions of elliptic equations”, Dokl. Akad. Nauk SSSR, 138:4 (1961), 805–808 ; English transl. in Soviet Math. Dokl., 2 (1961), 746–749 | MR | Zbl