Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology
Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1187-1221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider billiard systems within compact domains bounded by confocal conics on a hyperboloid of one sheet in the Minkowski space. We derive conditions for elliptic periodicity for such billiards. We describe the topology of these billiard systems in terms of Fomenko invariants. Then we provide periodicity conditions in terms of functional Pell equations and related extremal polynomials. Several examples are computed in terms of elliptic functions and classical Chebyshev and Zolotarev polynomials, as extremal polynomials over one or two intervals. These results are contrasted with the cases of billiards on the Minkowski and Euclidean planes. Dedicated to R. Baxter on the occasion of his 80th anniversary. Bibliography: 51 titles.
Keywords: Minkowski space, hyperboloid, periodic trajectories, Chebyshev polynomials
Mots-clés : billiard, confocal quadrics, Zolotarev polynomials, Fomenko invariants.
@article{SM_2022_213_9_a1,
     author = {V. Dragovi\'c and S. Gasiorek and M. Radnovi\'c},
     title = {Integrable billiards on {a~Minkowski} hyperboloid: extremal polynomials and topology},
     journal = {Sbornik. Mathematics},
     pages = {1187--1221},
     year = {2022},
     volume = {213},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a1/}
}
TY  - JOUR
AU  - V. Dragović
AU  - S. Gasiorek
AU  - M. Radnović
TI  - Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1187
EP  - 1221
VL  - 213
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_9_a1/
LA  - en
ID  - SM_2022_213_9_a1
ER  - 
%0 Journal Article
%A V. Dragović
%A S. Gasiorek
%A M. Radnović
%T Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology
%J Sbornik. Mathematics
%D 2022
%P 1187-1221
%V 213
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2022_213_9_a1/
%G en
%F SM_2022_213_9_a1
V. Dragović; S. Gasiorek; M. Radnović. Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1187-1221. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a1/

[1] A. K. Adabrah, V. Dragović and M. Radnović, “Periodic billiards within conics in the Minkowski plane and Akhiezer polynomials”, Regul. Chaotic Dyn., 24:5 (2019), 464–501 | DOI | MR | Zbl

[2] N. Achyeser (Akhiezer), “Über einige Funktionen, welche in zwei gegebenen Interwallen am wenigsten von Null abweichen. I Teil”, Izv. Akad. Nauk SSSR VII Ser. Otd. matem. i estestv. nauk, 1932, no. 9, 1163–1202 ; II Teil, 1933, no. 3, 309–344 ; III Teil, 1933, no. 4, 499–536 | Zbl | Zbl | Zbl

[3] N. I. Akhiezer, Lectures on the theory of approximation, Gostehizdat, Moscow–Leningrad, 1947, 323 pp. ; English transl., N. I. Achieser, Theory of approximation, Frederick Ungar Publishing Co., New York, 1956, x+307 pp. | MR | Zbl | MR | Zbl

[4] N. I. Akhiezer, Elements of the theory of elliptic functions, 2nd ed., Nauka, Moscow, 1970, 304 pp. ; English transl., Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, viii+237 pp. | MR | Zbl | DOI | MR | Zbl

[5] R. J. Baxter, “Eight-vertex model in lattice statistics”, Phys. Rev. Lett., 26:14 (1971), 832–833 | DOI

[6] R. J. Baxter, “One-dimensional anisotropic Heisenberg chain”, Phys. Rev. Lett., 26:14 (1971), 834–834 | DOI

[7] R. J. Baxter, “One-dimensional anisotropic Heisenberg chain”, Ann. Physics, 70:2 (1972), 323–337 | DOI | MR

[8] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228 | DOI | MR | Zbl

[9] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982, xii+486 pp. | MR | Zbl

[10] A. V. Bolsinov, A. V. Borisov and I. S. Mamaev, “Topology and stability of integrable systems”, Uspekhi Mat. Nauk, 65:2(392) (2010), 71–132 ; English transl. in Russian Math. Surveys, 65:2 (2010), 259–318 | DOI | MR | Zbl | DOI

[11] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Udmurtian University Publishing House, Izhevsk, 1999, 444 pp., 447 pp. ; English transl., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl | DOI | MR | Zbl

[12] A. V. Bolsinov, S. V. Matveev and A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Uspekhi Mat. Nauk, 45:2(272) (1990), 49–77 ; English transl. in Russian Math. Surveys, 45:2 (1990), 59–94 | MR | Zbl | DOI

[13] A. Cayley, “Developments on the porism of the in-and-circumscribed polygon”, Philos. Mag. (4), 7:46 (1854), 339–345 | DOI

[14] A. Cayley, “On the porism of the in-and-circumscribed polygon”, Philos. Trans. Roy. Soc. London, 151 (1861), 225–239

[15] V. Dragović, “Algebro-geometric approach to the Yang-Baxter equation and related topics”, Publ. Inst. Math. (Beograd) (N.S.), 91:105 (2012), 25–48 | DOI | MR | Zbl

[16] V. I. Dragović, “Geometrization and generalization of the Kowalevski top”, Comm. Math. Phys., 298:1 (2010), 37–64 | DOI | MR | Zbl

[17] V. Dragović, B. Jovanović and M. Radnović, “On elliptical billiards in the Lobachevsky space and associated geodesic hierarchies”, J. Geom. Phys., 47:2–3 (2003), 221–234 | DOI | MR | Zbl

[18] V. Dragović and M. Radnović, “Conditions of Cayley's type for ellipsoidal billiard”, J. Math. Phys., 39:1 (1998), 355–362 | DOI | MR | Zbl

[19] V. Dragović and M. Radnović, “On periodical trajectories of the billiard systems within an ellipsoid in $\mathbf R^d$ and generalized Cayley's condition”, J. Math. Phys., 39:11 (1998), 5866–5869 | DOI | MR | Zbl

[20] V. Dragović and M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[21] V. Dragović and M. Radnović, “Integrable billiards and quadrics”, Uspekhi Mat. Nauk, 65:2(392) (2010), 133–194 ; English transl. in Russian Math. Surveys, 65:2 (2010), 319–379 | DOI | MR | Zbl | DOI

[22] V. Dragović and M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[23] V. Dragović and M. Radnović, “Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics”, Adv. Math., 231:3–4 (2012), 1173–1201 | DOI | MR | Zbl

[24] V. Dragović and M. Radnović, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 17–30 | DOI | MR | Zbl

[25] V. Dragović and M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, Fundam. Prikl. Mat., 20:2 (2015), 51–64 ; English transl. in J. Math. Sci. (N.Y.), 223:6 (2017), 686–694 | MR | Zbl | DOI

[26] V. Dragović and M. Radnović, “Caustics of Poncelet polygons and classical extremal polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35 | DOI | MR | Zbl

[27] V. Dragović and M. Radnović, “Periodic ellipsoidal billiard trajectories and extremal polynomials”, Comm. Math. Phys., 372:1 (2019), 183–211 | DOI | MR | Zbl

[28] V. Dragović and V. Shramchenko, “Deformations of Zolotarev polynomials and Painlevé VI equations”, Lett. Math. Phys., 111:3 (2021), 75, 28 pp. | DOI | MR | Zbl

[29] J. J. Duistermaat, Discrete integrable systems. QRT maps and elliptic surfaces, Springer Monogr. Math., Springer, New York, 2010, xxii+627 pp. | DOI | MR | Zbl

[30] L. Euler, “Evolutio generalior formularum comparationi curvarum inservientium”, E347/1765, Novi Comment. Acad. Sci. Imp. Petropol., 12 (1768), 42–86; Opera Omnia. Ser. 1. Opera Math., 20, B. G. Teubneri, Lipsiae–Berolini, 1912, 318–356 | Zbl

[31] A. Fomenko, I. Kharcheva and V. Kibkalo, Realization of integrable Hamiltonian systems by billiard books, arXiv: 2012.05337

[32] A. T. Fomenko and S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[33] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Mat. Sb., 205:8 (2014), 139–160 ; English transl. in Sb. Math., 205:8 (2014), 1201–1221 | DOI | MR | Zbl | DOI

[34] A. T. Fomenko and V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333 | DOI | MR | Zbl

[35] A. T. Fomenko, V. V. Vedyushkina and V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR | Zbl

[36] P. Griffiths and J. Harris, “A Poncelet theorem in space”, Comment. Math. Helv., 52:1 (1977), 145–160 | DOI | MR | Zbl

[37] S. Gasiorek and M. Radnović, “Pseudo-Euclidean billiards within confocal curves on the hyperboloid of one sheet”, J. Geom. Phys., 161 (2021), 104032, 21 pp. | DOI | MR | Zbl

[38] M. G. Kreĭn, B. Ya. Levin and A. A. Nudel'man, “On special representations of polynomials that are positive on a system of closed intervals, and some applications”, Functional analysis, optimization, and mathematical economics, Oxford Univ. Press, New York, 1990, 56–114 | MR | Zbl

[39] B. Khesin and S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396 | DOI | MR | Zbl

[40] J. Moser and A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139:2 (1991), 217–243 | DOI | MR | Zbl

[41] M. Pnueli and V. Rom-Kedar, “On the structure of Hamiltonian impact systems”, Nonlinearity, 34:4 (2021), 2611–2658 | DOI | MR | Zbl

[42] M. Radnović, “Topology of the elliptical billiard with the Hooke's potential”, Theoret. Appl. Mech. (Belgrade), 42:1 (2015), 1–9 | DOI | Zbl

[43] N. Trudi, “Rappresentazione geometrica immediata dell' equazione fondamentale della teoria delle funzioni ellitiche con diverse applicazioni”, Mem. R. Accad. Sci. Napoli, 1853, 63–99

[44] N. Trudi, “Studii intorno ad una singolare eliminazione, con applicazione alla ricerca delle relazione tra gli elementi di due coniche, l'una iscritta, l'altra circoscritta ad un poligono, ed ai corrispondenti teoremi di Poncelet”, Atti R. Accad. Sci. Fis. Mat. Napoli, 1 (1863), 6, 53 pp.

[45] V. V. Vedyushkina, “The Fomenko-Zieschang invariants of nonconvex topological billiards”, Mat. Sb., 210:3 (2019), 17–74 ; English transl. in Sb. Math., 210:3 (2019), 310–363 | DOI | MR | Zbl | DOI

[46] A. P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, J. Geom. Phys., 7:1 (1990), 81–107 | DOI | MR | Zbl

[47] A. P. Veselov, “Growth of the number of images of a point under iterates of a multivalued map”, Mat. Zametki, 49:2 (1991), 29–35 ; English transl. in Math. Notes, 49:2 (1991), 134–139 | MR | Zbl | DOI

[48] A. P. Veselov, “Growth and integrability in the dynamics of mappings”, Comm. Math. Phys., 145:1 (1992), 181–193 | DOI | MR | Zbl

[49] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Mat. Sb., 209:12 (2018), 17–56 ; English transl. in Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl | DOI

[50] A. P. Veselov and L. H. Wu, “Geodesic scattering on hyperboloids and Knörrer's map”, Nonlinearity, 34:9 (2021), 5926–5954 | DOI | MR | Zbl

[51] E. I. Zolotarëv, “An application of elliptic functions in the question of functions of least and largest deviation from zero (1877)”, Complete works of E. I. Zolotarëv, v. II, Publishing House of the USSR Academy of Sciences, Leningrad, 1932, 1–59 (Russian) | Zbl