Mots-clés : quasiconformal analysis
@article{SM_2022_213_9_a0,
author = {S. K. Vodopyanov},
title = {Coincidence of set functions in quasiconformal analysis},
journal = {Sbornik. Mathematics},
pages = {1157--1186},
year = {2022},
volume = {213},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_9_a0/}
}
S. K. Vodopyanov. Coincidence of set functions in quasiconformal analysis. Sbornik. Mathematics, Tome 213 (2022) no. 9, pp. 1157-1186. http://geodesic.mathdoc.fr/item/SM_2022_213_9_a0/
[1] F. W. Gehring and J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114 (1965), 1–70 | DOI | MR | Zbl
[2] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl
[3] G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104 | DOI | MR | Zbl
[4] S. K. Vodop'yanov and V. M. Gol'dshtein, “Lattice isomorphisms of the spaces $W_n^1$ and quasiconformal mappings”, Sibirsk. Mat. Zh., 16:2 (1975), 224–246 ; English transl. in Siberian Math. J., 16:2 (1975), 174–189 | MR | Zbl | DOI
[5] V. M. Miklyukov, Conformal mapping of an irregular surface and its applications, Volgograd State University publishing house, Volgograd, 2005, 273 pp. (Russian)
[6] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl
[7] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1–2 (1975), 131–144 | DOI | MR | Zbl
[8] V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Sibirsk. Mat. Zh., 34:6 (1993), 216–221 ; English transl. in Siberian Math. J., 34:6 (1993), 1196–1200 | MR | Zbl | DOI
[9] H. Aikawa and M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–88 | MR | Zbl
[10] S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Sibirsk. Mat. Zh., 62:6 (2021), 1252–1270 ; English transl. in Siberian Math. J., 62:6 (2021), 1010–1025 | DOI | MR | Zbl | DOI
[11] S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms”, Dokl. Ross. Akad. Nauk. Mat. Inform. Protsessy Upr., 494 (2020), 21–25 ; English transl. in Dokl. Math., 102:2 (2020), 371–375 | DOI | Zbl | DOI | MR
[12] S. K. Vodopyanov, “On the analytic and geometric properties of mappings in the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Mat. Zametki, 108:6 (2020), 925–929 ; English transl. in Math. Notes, 108:6 (2020), 889–894 | DOI | MR | Zbl | DOI
[13] S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299 ; English transl. in Siberian Math. J., 61:6 (2020), 1002–1038 | DOI | MR | Zbl | DOI
[14] S. K. Vodopyanov and A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Ross. Akad. Nauk Ser. Mat., 85:5 (2021), 58–109 ; English transl. in Izv. Math., 85:5 (2021), 883–931 | DOI | MR | Zbl | DOI
[15] S. K. Vodopyanov, “Foundations of quasiconformal analysis of a two-index scale of spatial mappings”, Dokl. Ross. Akad. Nauk, 484:2 (2019), 142–146 ; English transl. in Dokl. Math., 99:1 (2019), 23–27 | Zbl | DOI | MR
[16] S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056 ; English transl. in Siberian Math. J., 59:5 (2018), 805–834 | DOI | MR | Zbl | DOI
[17] S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function”, Sibirsk. Mat. Zh., 59:6 (2018), 1240–1267 ; English transl. in Siberian Math. J., 59:6 (2018), 983–1005 | DOI | MR | Zbl | DOI
[18] S. K. Vodop'yanov, “Regularity of mappings inverse to Sobolev mappings”, Mat. Sb., 203:10 (2012), 3–32 ; English transl. in Sb. Math., 203:10 (2012), 1383–1410 | DOI | MR | Zbl | DOI
[19] S. K. Vodop'yanov and A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 10, 11–33 ; English transl. in Russian Math. (Iz. VUZ), 46:10 (2002), 9–31 | MR | Zbl
[20] S. K. Vodopyanov, “Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds”, Mat. Sb., 210:1 (2019), 63–112 ; English transl. in Sb. Math., 210:1 (2019), 59–104 | DOI | MR | Zbl | DOI
[21] S. K. Vodopyanov, “Isomorphisms of Sobolev spaces on Riemannian manifolds and quasiconformal mappings”, Sibirsk. Mat. Zh., 60:5 (2019), 996–1034 ; English transl. in Siberian Math. J., 60:5 (2019), 774–804 | DOI | MR | Zbl | DOI
[22] S. L. Sobolev, “Some transformation groups of $n$-dimensional space”, Dokl. Akad. Nauk SSSR, 32:6 (1941), 380–382 (Russian); French transl., S. Sobolev, “Sur quelques groupes de transformations de l'espace $n$-dimensionnel”, C. R. Acad. Sci. URSS, 32 (1941), 380–382 | MR | Zbl
[23] V. G. Maz'ya, Set classes and embedding theorems for function spaces. Some questions in the theory of elliptic equations, Kandidat Dissertation, Moscow State University, Moscow, 1962 (Russian)
[24] Yu. G. Reshetnyak, Space mappings with bounded distortion, Nauka, Novosibirsk, 1982, 286 pp. ; English transl., Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xvi+362 pp. | MR | Zbl | DOI | MR | Zbl
[25] H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen im Raum”, Comment. Math. Helv., 44 (1969), 284–307 | MR | Zbl
[26] F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY 1969), Ann. of Math. Studies, 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193 | DOI | MR | Zbl
[27] J. Lelong-Ferrand, “Étude d'une classe d'applications liées à des homomorphismes d'algébres de fonctions et généralisant les quasi-conformes”, Duke Math. J., 40 (1973), 163–186 | DOI | MR | Zbl
[28] A. Molchanova and S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17, 25 pp. | DOI | MR | Zbl
[29] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993, vi+363 pp. | MR | Zbl
[30] T. Rado and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp. | DOI | MR | Zbl
[31] M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 pp. | DOI | MR | Zbl
[32] S. K. Vodop'yanov and A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Mat. Tr., 6:2 (2003), 14–65 ; English transl. in Siberian Adv. Math., 14:4 (2004), 78–125 | MR | MR | Zbl
[33] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl
[34] P. Hajłasz, “Change of variables formula under minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101 | DOI | MR | Zbl
[35] S. K. Vodop'yanov, Taylor's formula and function spaces, Novosibirsk State University, Novosibirsk, 1988, 96 pp. (Russian) | MR | Zbl
[36] A. D. Ukhlov, “On mappings generating the embeddings of Sobolev spaces”, Sibirsk. Mat. Zh., 34:1 (1993), 185–192 ; English transl. in Siberian Math. J., 34:1 (1993), 165–171 | MR | Zbl | DOI
[37] S. K. Vodop'yanov and A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Sibirsk. Mat. Zh., 39:4 (1998), 776–795 ; English transl. in Siberian Math. J., 39:4 (1998), 665–682 | MR | Zbl | DOI
[38] S. K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Sibirsk. Mat. Zh., 37:6 (1996), 1269–1295 ; English transl. in Siberian Math. J., 37:6 (1996), 1113–1136 | MR | Zbl | DOI
[39] R. R. Salimov and E. A. Sevost'yanov, “$ACL$ and differentiability of open discrete ring $(p, Q)$-mappings”, Mat. Stud., 35:1 (2011), 28–36 | MR | Zbl
[40] V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean”, Mat. Sb., 130(172):2(6) (1986), 185–206 ; English transl. in Sb. Math., 58:1 (1987), 185–205 | MR | Zbl | DOI
[41] V. I. Ryazanov and E. A. Sevost'yanov, “Equicontinuity of mean quasiconformal mappings”, Sibirsk. Mat. Zh., 52:3 (2011), 665–679 ; English transl. in Siberian Math. J., 52:3 (2011), 524–536 | MR | Zbl | DOI
[42] R. R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. Ross. Akad. Nauk Ser. Mat., 72:5 (2008), 141–148 ; English transl. in Izv. Math., 72:5 (2008), 977–984 | DOI | MR | Zbl | DOI
[43] R. Salimov, “$ACL$ and differentiability of $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301 | MR | Zbl
[44] R. R. Salimov and E. A. Sevost'yanov, “The theory of shell-based $Q$-mappings in geometric function theory”, Mat. Sb., 201:6 (2010), 131–158 ; English transl. in Sb. Math., 201:6 (2010), 909–934 | DOI | MR | DOI | Zbl
[45] E. A. Sevost'yanov and S. A. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions, arXiv: 1801.01808v9
[46] R. R. Salimov and E. A. Sevost'yanov, “On local properties of spatial generalized quasi-isometries”, Mat. Zametki, 101:4 (2017), 594–610 ; English transl. in Math. Notes, 101:4 (2017), 704–717 | DOI | MR | Zbl | DOI
[47] R. Salimov, “On $Q$-homeomorphisms with respect to $p$-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213 | MR | Zbl
[48] V. G. Maz'ja, Sobolev spaces, Leningrad University Publishing House, Leningrad, 1985, 416 pp. ; English transl., Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | MR | Zbl | DOI | MR | Zbl