@article{SM_2022_213_8_a3,
author = {V. I. Yanchevskiǐ},
title = {Henselian division algebras and reduced unitary {Whitehead} groups for outer forms of~anisotropic algebraic groups of the type $A_n$},
journal = {Sbornik. Mathematics},
pages = {1096--1156},
year = {2022},
volume = {213},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_8_a3/}
}
TY - JOUR AU - V. I. Yanchevskiǐ TI - Henselian division algebras and reduced unitary Whitehead groups for outer forms of anisotropic algebraic groups of the type $A_n$ JO - Sbornik. Mathematics PY - 2022 SP - 1096 EP - 1156 VL - 213 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_8_a3/ LA - en ID - SM_2022_213_8_a3 ER -
%0 Journal Article %A V. I. Yanchevskiǐ %T Henselian division algebras and reduced unitary Whitehead groups for outer forms of anisotropic algebraic groups of the type $A_n$ %J Sbornik. Mathematics %D 2022 %P 1096-1156 %V 213 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2022_213_8_a3/ %G en %F SM_2022_213_8_a3
V. I. Yanchevskiǐ. Henselian division algebras and reduced unitary Whitehead groups for outer forms of anisotropic algebraic groups of the type $A_n$. Sbornik. Mathematics, Tome 213 (2022) no. 8, pp. 1096-1156. http://geodesic.mathdoc.fr/item/SM_2022_213_8_a3/
[1] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York–London, 1957, x+214 pp. | MR | Zbl
[2] J. A. Dieudonné, La géométrie des groupes classiques, Ergeb. Math. Grenzgeb., 5, 3ème éd., Springer-Verlag, Berlin–New York, 1971, viii+129 pp. | MR | Zbl
[3] N. Bourbaki, “Ch. 7: Modules sur les anneaux principaux”, Éléments de mathématique. Livre II: Algèbre, Ch. 6: Groupes et corps ordonnés. Ch. 7: Modules sur les anneaux principaux, Actualités Sci. Indust., 1179, Hermann, Paris, 1952 ; Ch. 8: Modules et anneaux semi-simples, 1261, 1958, 189 pp. ; Ch. 9: Formes sesquilinéaires et formes quadratiques, 1272, 1959, 211 pp. | MR | Zbl | MR | Zbl | MR | Zbl
[4] A. Borel, Linear algebraic groups, Math. Lecture Note Ser., W. A. Benjamin, Inc., New York–Amsterdam, 1969, xi+398 pp. | MR | Zbl
[5] T. A. Springer, Linear algebraic groups, Progr. Math., 9, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 1998, xiv+334 pp. | DOI | MR | Zbl
[6] J. E. Humphreys, Linear algebraic groups, Grad. Texts Math., 21, Springer-Verlag, New York–Heidelberg, 1975, xiv+247 pp. | DOI | MR | Zbl
[7] V. P. Platonov and A. S. Rapinchuk, Algebraic groups and number theory, Nauka, Moscow, 1991, 656 pp. ; English transl., Pure Appl. Math., 139, Academic Press, Inc., Boston, MA, 1994, xii+614 pp. | MR | Zbl | MR | Zbl
[8] J. Tits, “Algebraic and abstract simple groups”, Ann. of Math. (2), 80:2 (1964), 313–329 | DOI | MR | Zbl
[9] V. P. Platonov, “On the Tannaka-Artin problem”, Dokl. Akad. Nauk SSSR, 221:5 (1975), 1038–1041 ; English transl. in Soviet Math. Dokl., 16 (1975), 468–473 | MR | Zbl
[10] Ph. Gille, “Le problème de Kneser-Tits”, Séminaire N. Bourbaki, v. 2007/2008, Astérisque, 326, Soc. Math. France, Paris, 2009, Exp. No. 983, vii, 39–81 | MR | Zbl
[11] J. Tits, “Groupes de Whitehead de groupes algébriques simples sur un corps”, d'après V. P. Platonov et al., Séminaire N. Bourbaki, v. 1976/1977, Lecture Notes in Math., 677, Springer, Berlin, 1978, Exp. No. 505, 218–236 | DOI | MR | Zbl
[12] V. I. Yanchevskii, “Reduced unitary $K$-theory and division rings over discretely valued Hensel fields”, Izv. Akad. Nauk SSSR Ser. Mat., 42:4 (1978), 879–918 ; English transl. in Izv. Math., 13:1 (1979), 175–213 | MR | Zbl | DOI
[13] V. P. Platonov and V. I. Yanchevskii, “On the Kneser-Tits conjecture for unitary groups”, Dokl. Akad. Nauk SSSR, 225:1 (1975), 48–51 ; English transl. in Soviet Math. Dokl., 16 (1975), 1456–1460 | MR | Zbl
[14] V. P. Platonov and V. I. Yanchevskii, “$SK_1$ for division rings of noncommutative rational functions”, Dokl. Akad. Nauk SSSR, 249:5 (1979), 1064–1068 ; English transl. in Soviet Math. Dokl., 20 (1979), 1393–1397 | MR | Zbl
[15] V. P. Platonov, “The Tannaka-Artin problem and reduced K-theory”, Izv. Akad. Nauk SSSR Ser. Mat., 40:2 (1976), 227–261 ; English transl. in Izv. Math., 10:2 (1976), 211–243 | MR | Zbl | DOI
[16] V. P. Platonov, “Birational properties of the reduced Whitehead group”, Dokl. Akad. Nauk. Bel. SSR, 21:3 (1977), 197–198 ; English transl. in Selected papers in $K$-theory, Amer. Math. Soc. Transl. Ser. 2, 154, Amer. Math. Soc., Providence, RI, 1992, 7–9 | MR | Zbl | DOI | MR | Zbl
[17] V. I. Yanchevskii, “Division rings over Hensel discretely valued fields and the Tannaka-Artin problem”, Dokl. Akad. Nauk SSSR, 226:2 (1976), 281–283 ; English transl. in Soviet Math. Dokl., 17 (1976), 113–116 | MR | Zbl
[18] V. I. Yanchevskii, “A converse problem in reduced unitary K-theory”, Mat. Zametki, 26:3 (1979), 475–482 ; English transl. in Math. Notes, 26:3 (1979), 728–731 | MR | Zbl | DOI
[19] V. I. Yanchevskii, “A converse problem in reduced unitary K-theory”, Mat. Sb., 110(152):4(12) (1979), 579–596 ; English transl. in Sb. Math., 38:4 (1981), 533–548 | MR | Zbl | DOI
[20] P. Draxl, “$SK_1$ von Algebren über vollständig diskret bewerteten Körpern und Galoiskohomologie abelscher Körpererweiterungen”, J. Reine Angew. Math., 1977:293/294 (1977), 116–142 | DOI | MR | Zbl
[21] P. Draxl, “Ostrowski's theorem for Henselian valued skew fields”, J. Reine Angew. Math., 1984:354 (1984), 213–218 | DOI | MR | Zbl
[22] R. Hazrat and A. R. Wadsworth, “$\mathrm{SK}_1$ of graded division algebras”, Israel J. Math., 183 (2011), 117–163 | DOI | MR | Zbl
[23] R. Hazrat and A.Ṙ. Wadsworth, “Unitary $\mathrm{SK}_1$ of graded and valued division algebras”, Proc. Lond. Math. Soc. (3), 103:3 (2011), 508–534 | DOI | MR | Zbl
[24] A. S. Merkurjev, “Generic element in $SK_1$ for simple algebras”, $K$-Theory, 7:1 (1993), 1–3 | DOI | MR | Zbl
[25] V. P. Platonov, “Algebraic groups and reduced $K$-theory”, Proceedings of the international congress of mathematicians (Helsinki 1978), Acad. Sci. Fennica, Helsinki, 1980, 311–317 | MR | Zbl
[26] A. Suslin, “$SK_1$ of division algebras and Galois cohomology revisited”, Proceedings of the St. Petersburg Mathematical Society, v. XII, Amer. Math. Soc. Transl. Ser. 2, 219, Amer. Math. Soc., Providence, RI, 2006, 125–147 | DOI | MR | Zbl
[27] V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Transl. Math. Monogr., 179, Amer. Math. Soc., Providence, RI, 1998, xiv+218 pp. | DOI | MR | Zbl
[28] A. R. Wadsworth and V. I. Yanchevskiĭ, “Unitary $\mathrm{SK}_1$ for a graded division ring and its quotient division ring”, J. Algebra, 352:1 (2012), 62–78 | DOI | MR | Zbl
[29] A. R. Wadsworth, “Unitary $\mathrm{SK}_1$ of semiramified graded and valued division algebras”, Manuscripta Math., 139:3–4 (2012), 343–389 | DOI | MR | Zbl
[30] B. Sury, “On $\operatorname{SU}(1,D)/[\mathrm{U}(1,D),\mathrm{U}(1,D)]$ for a quaternion division algebra $D$”, Arch. Math. (Basel), 90:6 (2008), 493–500 | DOI | MR | Zbl
[31] B. A. Sethuraman and B. Sury, “A note on the special unitary group of a division algebra”, Proc. Amer. Math. Soc., 134:2 (2006), 351–354 | DOI | MR | Zbl
[32] V. I. Yanchevskii, “Reduced Whitehead groups and the conjugacy problem for special unitary groups of anisotropic Hermitian forms”, Questions of the theory of representations of algebras and groups. 23, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 400, St. Petersburg Department of Steklov. Mathematical Institute, St. Petersburg, 2012, 222–245 ; English transl. in J. Math. Sci. (N.Y.), 192:2 (2013), 250–262 | MR | Zbl | DOI
[33] V. P. Platonov and V. I. Yanchevskii, “Dieudonné's conjecture on the structure of unitary groups over a division ring, and Hermitian $K$-theory”, Izv. Akad. Nauk SSSR Ser. Mat., 48:6 (1984), 1266–1294 ; English transl. in Izv. Math., 25:3 (1985), 573–599 | MR | Zbl | DOI
[34] V. P. Platonov and V. I. Yanchevskii, “On the theory of Henselian division algebras”, Dokl. Akad. Nauk SSSR, 297:2 (1987), 294–298 ; English transl. in Dokl. Math., 36:3 (1988), 468–472 | MR | Zbl
[35] V. P. Platonov and V. I. Yanchevskii, “Finite-dimensional Henselian division algebras”, Dokl. Akad. Nauk SSSR, 297:3 (1987), 542–547 ; English transl. in Dokl. Math., 36:3 (1988), 502–506 | MR | Zbl
[36] B. Jacob and A. Wadsworth, “Division algebras over Henselian fields”, J. Algebra, 128:1 (1990), 126–179 | DOI | MR | Zbl
[37] Yu. L. Ershov, “Henselian valuations of division rings and the group $\mathrm{SK}_1$”, Mat. Sb., 117(159):1 (1982), 60–68 ; English transl. in Sb. Math., 45:1 (1983), 63–71 | MR | Zbl | DOI
[38] A. V. Prokopchuk and V. I. Yanchevskiĭ, “Noncyclic unitary involutions of Henselian discretely normed algebras with division”, Isv. Nats. Akad. Nauk Belarusi Ser. Fiz.-Mat. Nauk, 2014, no. 1, 51–53 (Russian)
[39] A. A. Albert, “Involutorial simple algebras and real Riemann matrices”, Ann. of Math. (2), 36:4 (1935), 886–964 | DOI | MR | Zbl
[40] M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998, xxii+593 pp. | DOI | MR | Zbl
[41] U. Rehmann, S. V. Tikhonov and V. I. Yanchevskiĭ, “Prescribed behavior of central simple algebras after scalar extension”, J. Algebra, 351:1 (2012), 279–293 | DOI | MR | Zbl
[42] P. Roquette, “Isomorphisms of generic splitting fields of simple algebras”, J. Reine Angew. Math., 1984:214/215 (1964), 207–226 | DOI | MR | Zbl
[43] S. V. Tikhonov and V. I. Yanchevskii, “Homomorphisms and involutions of unramified Henselian division algebras”, Questions of the theory of representations of algebras and groups. 26, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 423, St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, 2014, 264–275 ; English transl. in J. Math. Sci. (N.Y.), 209:4 (2015), 657–664 | MR | Zbl | DOI
[44] A. S. Merkur'ev (Merkurjev), “Norm principle for algebraic groups”, Algebra i Analiz, 7:2 (1995), 77–105 ; English transl. in St. Petersburg Math. J., 7:2 (1996), 243–264 | MR | Zbl
[45] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., 24, Reprint of 1939 ed., Amer. Math. Soc., Providence, RI, 1961, xi+210 pp. | MR | Zbl
[46] J.-P. Serre, Cohomologie galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, 2ème éd., Springer-Verlag, Berlin–Heidelberg–New York, 1964, vii+212 pp. (not consecutively paged) | MR | Zbl