Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth
Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 1004-1019 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An elliptic boundary-value problem with discontinuous nonlinearity of exponential growth at infinity is investigated. The existence theorem for a weak semiregular solution of this problem is deduced by the variational method. The semiregularity of a solution means that its values are points of continuity of the nonlinearity with respect to the phase variable almost everywhere in the domain where the boundary-value problem is considered. The variational approach used is based on the concept of a quasipotential operator, unlike the traditional approach, which uses Clarke's generalized derivative. Bibliography: 29 titles.
Keywords: elliptic boundary-value problem, discontinuous nonlinearity, exponential growth, semiregular solution, variational method.
@article{SM_2022_213_7_a3,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth},
     journal = {Sbornik. Mathematics},
     pages = {1004--1019},
     year = {2022},
     volume = {213},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_7_a3/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1004
EP  - 1019
VL  - 213
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_7_a3/
LA  - en
ID  - SM_2022_213_7_a3
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth
%J Sbornik. Mathematics
%D 2022
%P 1004-1019
%V 213
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2022_213_7_a3/
%G en
%F SM_2022_213_7_a3
V. N. Pavlenko; D. K. Potapov. Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth. Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 1004-1019. http://geodesic.mathdoc.fr/item/SM_2022_213_7_a3/

[1] M. de Souza, E. de Medeiros and U. Severo, “On a class of quasilinear elliptic problems involving Trudinger-Moser nonlinearities”, J. Math. Anal. Appl., 403:2 (2013), 357–364 | DOI | MR | Zbl

[2] M. de Souza, E. de Medeiros and U. Severo, “On a class of nonhomogeneous elliptic problems involving exponential critical growth”, Topol. Methods Nonlinear Anal., 44:2 (2014), 399–412 | DOI | MR | Zbl

[3] M. de Souza, “Existence of solutions to equations of $N$-Laplacian type with Trudinger-Moser nonlinearities”, Appl. Anal., 93:10 (2014), 2111–2125 | DOI | MR | Zbl

[4] M. de Souza, “On a class of nonhomogeneous elliptic equation on compact Riemannian manifold without boundary”, Mediterr. J. Math., 15:3 (2018), 101, 11 pp. | DOI | MR | Zbl

[5] M. de Souza, “On a class of nonhomogeneous elliptic equations on noncompact Riemannian manifolds”, Complex Var. Elliptic Equ., 64:3 (2019), 386–397 | DOI | MR | Zbl

[6] C. O. Alves and J. A. Santos, “Multivalued elliptic equation with exponential critical growth in $\mathbb R^2$”, J. Differential Equations, 261:9 (2016), 4758–4788 | DOI | MR | Zbl

[7] S. Carl and S. Heikkilä, “Elliptic problems with lack of compactness via a new fixed point theorem”, J. Differential Equations, 186:1 (2002), 122–140 | DOI | MR

[8] J. Moser, “A sharp form of an inequality by N. Trudinger”, Indiana Univ. Math. J., 20:11 (1971), 1077–1092 | DOI | MR | Zbl

[9] N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17:5 (1967), 473–483 | MR | Zbl

[10] M. A. Krasnosel'skii and A. V. Pokrovskii, “Regular solutions of equations with discontinuous nonlinearities”, Dokl. Akad. Nauk SSSR, 226:3 (1976), 506–509 ; English transl. in Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl

[11] M. A. Krasnosel'skii and A. V. Pokrovskii, “Elliptic equations with discontinuous nonlinearities”, Dokl. Ross. Akad. Nauk, 342:6 (1995), 731–734 ; English transl. in Dokl. Math., 51:3 (1995), 415–418 | MR | Zbl

[12] V. N. Pavlenko and D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Mat. Sb., 206:9 (2015), 121–138 ; English transl. in Sb. Math., 206:9 (2015), 1281–1298 | DOI | MR | Zbl | DOI

[13] M. A. Krasnosel'skii and A. V. Lusnikov, “Regular fixed points and stable invariant subsets of monotone operators”, Funktsional. Anal. Prilozhen., 30:3 (1996), 34–46 ; English transl. in Funct. Anal. Appl., 30:3 (1996), 174–183 | DOI | MR | Zbl | DOI

[14] V. N. Pavlenko and D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Mat. Sb., 208:1 (2017), 165–182 ; English transl. in Sb. Math., 208:1 (2017), 157–172 | DOI | MR | Zbl | DOI

[15] V. N. Pavlenko and D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Mat. Zametki, 101:2 (2017), 247–261 ; English transl. in Math. Notes, 101:2 (2017), 284–296 | DOI | MR | Zbl | DOI

[16] V. N. Pavlenko and D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Mat. Sb., 210:7 (2019), 145–170 ; English transl. in Sb. Math., 210:7 (2019), 1043–1066 | DOI | MR | Zbl | DOI

[17] V. N. Pavlenko and D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Ross. Akad. Nauk Ser. Mat., 84:3 (2020), 168–184 ; English transl. in Izv. Math., 84:3 (2020), 592–607 | DOI | MR | Zbl | DOI

[18] V. N. Pavlenko and D. K. Potapov, “On the existence of three nontrivial solutions of a resonance elliptic boundary value problem with a discontinuous nonlinearity”, Differ. Uravn., 56:7 (2020), 861–871 ; English transl. in Differ. Equ., 56:7 (2020), 831–841 | DOI | MR | Zbl | DOI

[19] V. N. Pavlenko and D. K. Potapov, “Existence of semiregular solutions of elliptic systems with discontinuous nonlinearities”, Mat. Zametki, 110:2 (2021), 239–257 ; English transl. in Math. Notes, 110:2 (2021), 226–241 | DOI | MR | Zbl | DOI

[20] V. N. Pavlenko and D. K. Potapov, “Variational method for elliptic systems with discontinuous nonlinearities”, Mat. Sb., 212:5 (2021), 133–152 ; English transl. in Sb. Math., 212:5 (2021), 726–744 | DOI | MR | Zbl | DOI

[21] V. N. Pavlenko, “On the solvability of some nonlinear equations with discontinuous operators”, Dokl. Akad. Nauk SSSR, 204:6 (1972), 1320–1323 ; English transl. in Soviet Math. Dokl., 13 (1972), 846–850 | MR | Zbl

[22] V. N. Pavlenko, “Variational method for equations with discontinuous operators”, Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2, 87–95 (Russian) | MR | Zbl

[23] V. N. Pavlenko and D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Sibirsk. Mat. Zh., 42:4 (2001), 911–919 ; English transl. in Siberian Math. J., 42:4 (2001), 766–773 | MR | Zbl | DOI

[24] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Fizmatgiz, Moscow, 1958, 271 pp. ; English transl., P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | Zbl | MR | Zbl

[25] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Nauka, Moscow, 1972, 416 pp. ; English transl., Halsted Press (A division of John Wiley Sons), New York–Toronto, ON; Israel Program for Scientific Translations, Jerusalem–London, 1973, xi+356 pp. | MR | Zbl | MR | Zbl

[26] V. N. Pavlenko, “Existence theorems for elliptic variational inequalities with quasipotential operators”, Differ. Uravn., 24:8 (1988), 1397–1402 ; English transl. in Differ. Equ., 24:8 (1988), 913–916 | MR | Zbl

[27] A. N. Kolmogorov and S. V. Fomin, Introductory real analysis, 3rd ed., Nauka, Moscow, 1972, 496 pp. ; English transl. of 2nd ed., Rev. ed., Prentice-Hall, Inc., Englewood Cliffs, NY, 1970, xii+403 pp. | Zbl | MR | Zbl

[28] V. N. Pavlenko, “The existence of solutions for nonlinear equations with discontinuous monotone operators”, Vestnik Moskov. Univ. Ser. 1 Mat. Mekh., 1973, no. 6, 21–29 ; English transl. in Moscow Univ. Math. Bull., 28:6 (1974), 70–77 | MR | Zbl

[29] N. Dunford and J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Intersci. Publ. John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | Zbl