The predicate version of the joint logic of problems and propositions
Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 981-1003

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the joint logic of problems and propositions $\mathrm{QHC}$ introduced by Melikhov. We construct Kripke models with audit worlds for this logic and prove the soundness and completeness of $\mathrm{QHC}$ with respect to this type of model. The conservativity of the logic $\mathrm{QHC}$ over the intuitionistic modal logic $\mathrm{QH4}$, which coincides with the ‘lax logic’ $\mathrm{QLL}^+$, is established. We construct Kripke models with audit worlds for the logic $\mathrm{QH4}$ and prove the corresponding soundness and completeness theorems. We also prove that the logics $\mathrm{QHC}$ and $\mathrm{QH4}$ have the disjunction and existence properties. Bibliography: 33 titles.
Keywords: nonclassical logics, Kripke semantics.
@article{SM_2022_213_7_a2,
     author = {A. A. Onoprienko},
     title = {The predicate version of the joint logic of problems and propositions},
     journal = {Sbornik. Mathematics},
     pages = {981--1003},
     publisher = {mathdoc},
     volume = {213},
     number = {7},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_7_a2/}
}
TY  - JOUR
AU  - A. A. Onoprienko
TI  - The predicate version of the joint logic of problems and propositions
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 981
EP  - 1003
VL  - 213
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_7_a2/
LA  - en
ID  - SM_2022_213_7_a2
ER  - 
%0 Journal Article
%A A. A. Onoprienko
%T The predicate version of the joint logic of problems and propositions
%J Sbornik. Mathematics
%D 2022
%P 981-1003
%V 213
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_7_a2/
%G en
%F SM_2022_213_7_a2
A. A. Onoprienko. The predicate version of the joint logic of problems and propositions. Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 981-1003. http://geodesic.mathdoc.fr/item/SM_2022_213_7_a2/