Entropy of a unitary operator on $L^2(\pmb{\mathbb{T}}^n)$
Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 925-980 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of the $\mu$-norm of an operator, introduced in [28], is investigated. The focus is on operators on $L^2(\mathbb{T}^n)$, where $\mathbb{T}^n$ is the $n$-torus (the case when $n=1$ was previously considered in [29]). The main source of motivation for the study was the role of the $\mu$-norm as a key tool in constructing a quantum analogue of metric entropy, namely, the entropy of a unitary operator on $L^2(\mathcal X,\mu)$, where $(\mathcal X,\mu)$ is a probability space. The properties of the $\mu$-norm are presented and some ways to calculate it for various classes of operators on $L^2(\mathbb{T}^n)$ are described. The construction of entropy proposed in [28] is modified to make it subadditive and monotone with respect to partitions of $\mathcal X$. Examples of the calculation of entropy are presented for some classes of operators on $L^2(\mathbb{T}^n)$. Bibliography: 29 titles.
Keywords: Hilbert space, $\mu$-norm of an operator, metric entropy, Schrödinger propagator, operator theory.
@article{SM_2022_213_7_a1,
     author = {K. A. Afonin and D. V. Treschev},
     title = {Entropy of a~unitary operator on $L^2(\pmb{\mathbb{T}}^n)$},
     journal = {Sbornik. Mathematics},
     pages = {925--980},
     year = {2022},
     volume = {213},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/}
}
TY  - JOUR
AU  - K. A. Afonin
AU  - D. V. Treschev
TI  - Entropy of a unitary operator on $L^2(\pmb{\mathbb{T}}^n)$
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 925
EP  - 980
VL  - 213
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/
LA  - en
ID  - SM_2022_213_7_a1
ER  - 
%0 Journal Article
%A K. A. Afonin
%A D. V. Treschev
%T Entropy of a unitary operator on $L^2(\pmb{\mathbb{T}}^n)$
%J Sbornik. Mathematics
%D 2022
%P 925-980
%V 213
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/
%G en
%F SM_2022_213_7_a1
K. A. Afonin; D. V. Treschev. Entropy of a unitary operator on $L^2(\pmb{\mathbb{T}}^n)$. Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 925-980. http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/

[1] L. Accardi, M. Ohya and N. Watanabe, “Note on quantum dynamical entropies”, Rep. Math. Phys., 38:3 (1996), 457–469 | DOI | MR | Zbl

[2] L. Accardi, M. Ohya and N. Watanabe, “Dynamical entropy through quantum Markov chains”, Open Syst. Inf. Dyn., 4:1 (1997), 71–87 | DOI | Zbl

[3] R. Alicki and M. Fannes, Quantum dynamical systems, Oxford Univ. Press, Oxford, 2001, xiv+278 pp. | DOI | MR | Zbl

[4] C. Beck and D. Graudenz, “Symbolic dynamics of successive quantum-mechanical measurements”, Phys. Rev. A (3), 46:10 (1992), 6265–6276 | DOI | MR

[5] V. I. Bogachev, Measure theory, v. 1, 2, Reguluarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2003, 544 pp., 576 pp.; English transl., v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[6] V. I. Bogachev and O. G. Smolyanov, Real and functional analysis, Reguluarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2009, 724 pp.; English transl., Mosc. Lect., 4, Springer, Cham, 2020, 586 pp. | DOI | MR | Zbl

[7] J. Bourgain and L. Tzafriri, “On a problem of Kadison and Singer”, J. Reine Angew. Math., 1991:420 (1991), 1–43 | DOI | MR | Zbl

[8] A. Connes, H. Narnhofer and W. Thirring, “Dynamical entropy of $C^*$ algebras and von Neumann algebras”, Comm. Math. Phys., 112:4 (1987), 691–719 | DOI | MR | Zbl

[9] T. Downarowicz and B. Frej, “Measure-theoretic and topological entropy of operators on function spaces”, Ergodic Theory Dynam. Systems, 25:2 (2005), 455–481 | DOI | MR | Zbl

[10] B. Frej and D. Huczek, “Doubly stochastic operators with zero entropy”, Ann. Funct. Anal., 10:1 (2019), 144–156 ; arXiv: 1803.07882 | DOI | MR | Zbl

[11] N. Dunford and J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | Zbl

[12] R. Engelking, General topology, Transl. from the Polish, Sigma Ser. Pure Math., 6, 2nd ed., Hendermann Verlag, Berlin, 1989, viii+529 pp. | MR | Zbl

[13] É. Ghys, R. Langevin and P. Walczak, “Entropie mesurée et partitions de l'unité”, C. R. Acad. Sci. Paris Sér. I Math., 303:6 (1986), 251–254 | MR | Zbl

[14] A. Ya. Helemskii, Banach and polynormed algebras. General theory, representations, homologies, Nauka, Moscow, 1989, 465 pp. ; English transl., A. Ya. Helemskii, Banach and locally convex algebras, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993, xvi+446 pp. | MR | Zbl | MR | Zbl

[15] E. Hewitt and K. A. Ross, Abstract harmonic analysis, v. 1, Grundlehren Math. Wiss., 115, Structure of topological groups, integration theory, group representations, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1979, ix+519 pp. | DOI | MR | Zbl

[16] B. S. Kashin, “Some properties of matrices of bounded operators from space $l_2^n$ to $l_2^m$”, Izv. Akad. Nauk Arm. SSR Mat., 15:5 (1980), 379–394 ; English transl. in Soviet J. Contemporary Math. Anal., 15:5 (1980), 44–57 | MR | Zbl

[17] B. Kashin and L. Tzafriri, Some remarks on the restrictions of operators to coordinate subspaces, Preprint no. 12, Hebrew Univ. of Jerusalem, Jerusalem, 1993/94, 14 pp. http://www.mi-ras.ru/~kashin/download/preprint93.pdf

[18] B. Kashin, E. Kosov, I. Limonova and V. Temlyakov, Sampling discretization and related problems, arXiv: 2109.07567

[19] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[20] B. Kollár and M. Koniorczyk, “Entropy rate of message sources driven by quantum walks”, Phys. Rev. A, 89 (2014), 022338, 12 pp. | DOI

[21] I. I. Makarov, “Dynamical entropy for Markov operators”, J. Dynam. Control Systems, 6 (1), 1–11 | DOI | MR | Zbl

[22] M. Ohya, “State change, complexity and fractal in quantum systems”, Quantum communications and measurement (Univ. of Nottingham, Nottingham, GB 1994), Plenum Press, New York, 1995, 309–320 | DOI | MR | Zbl

[23] M. Ohya, “Foundation of entropy, complexity and fractals in quantum systems”, Probability towards 2000 (New York 1995), Lect. Notes Stat., 128, Springer, New York, 1998, 263–286 | DOI | MR | Zbl

[24] P. Pechukas, “Kolmogorov entropy and ‘quantum chaos’ ”, J. Phys. Chem., 86:12 (1982), 2239–2243 | DOI

[25] A. N. Shiryaev, Probability–1, 4th ed., Moscow Center for Continuous Mathematical Education, Moscow, 2007, 552 pp.; English transl., Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[26] M. D. Srinivas, “Quantum generalization of Kolmogorov entropy”, J. Math. Phys., 19:9 (1978), 1952–1961 | DOI | MR | Zbl

[27] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl

[28] D. V. Treschev, “$\mu$-norm of an operator”, Tr. Mat. Inst. Steklov., 310 (2020), 280–308 ; English transl. in Proc. Steklov Inst. Math., 310 (2020), 262–290 | DOI | MR | Zbl | DOI

[29] D. Treschev, “$\mu$-norm and regularity”, J. Dynam. Differential Equations, 33:3 (2021), 1269–1295 | DOI | MR | Zbl