Entropy of a~unitary operator on $L^2(\pmb{\mathbb{T}}^n)$
Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 925-980

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of the $\mu$-norm of an operator, introduced in [28], is investigated. The focus is on operators on $L^2(\mathbb{T}^n)$, where $\mathbb{T}^n$ is the $n$-torus (the case when $n=1$ was previously considered in [29]). The main source of motivation for the study was the role of the $\mu$-norm as a key tool in constructing a quantum analogue of metric entropy, namely, the entropy of a unitary operator on $L^2(\mathcal X,\mu)$, where $(\mathcal X,\mu)$ is a probability space. The properties of the $\mu$-norm are presented and some ways to calculate it for various classes of operators on $L^2(\mathbb{T}^n)$ are described. The construction of entropy proposed in [28] is modified to make it subadditive and monotone with respect to partitions of $\mathcal X$. Examples of the calculation of entropy are presented for some classes of operators on $L^2(\mathbb{T}^n)$. Bibliography: 29 titles.
Keywords: Hilbert space, $\mu$-norm of an operator, metric entropy, Schrödinger propagator, operator theory.
@article{SM_2022_213_7_a1,
     author = {K. A. Afonin and D. V. Treschev},
     title = {Entropy of a~unitary operator on $L^2(\pmb{\mathbb{T}}^n)$},
     journal = {Sbornik. Mathematics},
     pages = {925--980},
     publisher = {mathdoc},
     volume = {213},
     number = {7},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/}
}
TY  - JOUR
AU  - K. A. Afonin
AU  - D. V. Treschev
TI  - Entropy of a~unitary operator on $L^2(\pmb{\mathbb{T}}^n)$
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 925
EP  - 980
VL  - 213
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/
LA  - en
ID  - SM_2022_213_7_a1
ER  - 
%0 Journal Article
%A K. A. Afonin
%A D. V. Treschev
%T Entropy of a~unitary operator on $L^2(\pmb{\mathbb{T}}^n)$
%J Sbornik. Mathematics
%D 2022
%P 925-980
%V 213
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/
%G en
%F SM_2022_213_7_a1
K. A. Afonin; D. V. Treschev. Entropy of a~unitary operator on $L^2(\pmb{\mathbb{T}}^n)$. Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 925-980. http://geodesic.mathdoc.fr/item/SM_2022_213_7_a1/