Behaviour of Birkhoff sums generated by rotations of the circle
Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 891-924
Voir la notice de l'article provenant de la source Math-Net.Ru
For continuous functions $f$ with zero mean on the circle we consider the Birkhoff sums $f(n,x,h)$ generated by the rotations by $2\pi h$, where $h$ is an irrational number. The main result asserts that the growth rate of the sequence $\max_x f(n,x,h)$ as $n \to \infty$ depends only on the uniform convergence to zero of the Birkhoff means $\frac{1}{n}f(n,x,h)$. Namely, we show that for any sequence $\sigma_k \to 0$ and any irrational $h$ there exists a function $f$ such that the sequence $\max_x f(n,x,h)$ increases faster than $n\sigma_n$. We also show that for any function $f$ that is not a trigonometric polynomial there exist irrational $h$ for which some subsequence $\max_x f(n_k,x,h)$ increases faster than the corresponding subsequence $n_k\sigma_{n_k}$.
We present applications to weighted shift operators generated by irrational rotations and to their resolvents. Namely, we show that the resolvent of such an operator can increase arbitrarily fast in approaching the spectrum.
Bibliography: 46 titles.
Keywords:
Birkhoff sum, ergodic rotation of the circle, weighted shift operator, resolvent.
@article{SM_2022_213_7_a0,
author = {A. B. Antonevich and A. V. Kochergin and A. A. Shukur},
title = {Behaviour of {Birkhoff} sums generated by rotations of the circle},
journal = {Sbornik. Mathematics},
pages = {891--924},
publisher = {mathdoc},
volume = {213},
number = {7},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_7_a0/}
}
TY - JOUR AU - A. B. Antonevich AU - A. V. Kochergin AU - A. A. Shukur TI - Behaviour of Birkhoff sums generated by rotations of the circle JO - Sbornik. Mathematics PY - 2022 SP - 891 EP - 924 VL - 213 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_7_a0/ LA - en ID - SM_2022_213_7_a0 ER -
A. B. Antonevich; A. V. Kochergin; A. A. Shukur. Behaviour of Birkhoff sums generated by rotations of the circle. Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 891-924. http://geodesic.mathdoc.fr/item/SM_2022_213_7_a0/