@article{SM_2022_213_7_a0,
author = {A. B. Antonevich and A. V. Kochergin and A. A. Shukur},
title = {Behaviour of {Birkhoff} sums generated by rotations of the circle},
journal = {Sbornik. Mathematics},
pages = {891--924},
year = {2022},
volume = {213},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_7_a0/}
}
A. B. Antonevich; A. V. Kochergin; A. A. Shukur. Behaviour of Birkhoff sums generated by rotations of the circle. Sbornik. Mathematics, Tome 213 (2022) no. 7, pp. 891-924. http://geodesic.mathdoc.fr/item/SM_2022_213_7_a0/
[1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic theory, Nauka, Moscow, 1980, 384 pp. ; English transl., Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | MR | Zbl | DOI | MR | Zbl
[2] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[3] H. Poincaré, “Sur les courbes définies par les équations différentielles”, C. R. Acad. Sci. Paris, XCIII, XCVIII (1882, 1884), 951–952, 287–289 ; J. Math. Pures Appl. (4), I, II (1885, 1886), 167–244, 151–211 | Zbl | Zbl
[4] H. Poincaré, “Sur les séries trigonométriques”, C. R. Acad. Sci. Paris, 101 (1886), 1131–1134 | Zbl
[5] V. V. Kozlov, Methods of qualitative analysis in the dynamics of a rigid body, 2nd ed., Regulyarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2000, 248 pp. (Russian) | MR | Zbl
[6] V. V. Kozlov, “On a problem of Poincaré”, Prikl. Mat. Mekh., 40:2 (1976), 352–355 ; English transl. in J. Appl. Math. Mech., 40:2 (1976), 326–329 | Zbl | DOI
[7] A. B. Krygin, “$\omega$-Limit sets of smooth cylindrical cascades”, Mat. Zametki, 23:6 (1978), 873–884 ; English transl. in Math. Notes, 23:6 (1978), 479–485 | MR | Zbl | DOI
[8] E. A. Sidorov, “Conditions for uniform Poisson stability of cylindrical systems”, Uspekhi Mat. Nauk, 34:6(210) (1979), 184–188 ; English transl. in Russian Math. Surveys, 34:6 (1979), 220–224 | MR | Zbl | DOI
[9] N. G. Moshchevitin, “Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems”, Mat. Zametki, 58:3 (1995), 394–410 ; English transl. in Math. Notes, 58:3 (1995), 948–959 | MR | Zbl | DOI
[10] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Izv. Akad. Nauk SSSR Ser. Mat., 37:6 (1973), 1259–1274 ; English transl. in Math. USSR-Izv., 7:6 (1973), 1257–1271 | MR | Zbl | DOI
[11] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 ; English transl. in Russian Math. Surveys, 18:6 (1963), 85–191 | MR | Zbl | DOI
[12] A. Ya. Gordon, “Sufficient condition for unsolvability of the additive functional homological equation connected with the ergodic rotation of a circle”, Funktsional. Anal. i Prilozhen., 9:4 (1975), 71–72 ; English transl. in Funct. Anal. Appl., 9:4 (1975), 334–336 | MR | Zbl | DOI
[13] A. A. Gura, “Homological equations and topological properties of $S^1$-extensions over an ergodic rotation of the circle”, Mat. Zametki, 23:3 (1978), 463–470 ; English transl. in Math. Notes, 23:3 (1978), 251–255 | MR | Zbl | DOI
[14] A. V. Rozhdestvenskii, “An additive cohomological equation and typical behavior of Birkhoff sums over a translation of the multidimensional torus”, Dynamical systems and optimization, Tr. Mat. Inst. Steklova, 256, Nauka, MAIK “Nauka/Interpeiodika”, Moscow, 2007, 278–289 ; English transl. in Proc. Steklov Inst. Math., 256 (2007), 263–274 | MR | Zbl | DOI
[15] E. A. Sidorov, “Topological transitivity of cylindrical cascades”, Mat. Zametki, 14:3 (1973), 441–452 ; English transl. in Math. Notes, 14:3 (1973), 810–816 | MR | Zbl | DOI
[16] A. N. Kolmogorov, “Dynamical systems with integral invariant on a torus”, Dokl. Akad. Nauk SSSR, 93:5 (1953), 763–766 (Russian) | MR | Zbl
[17] L. G. Schnirelmann, “Example of a plane transformation”, Izv. Donskogo Politekhn. Inst., 14 (1930), 64–74 (Russian)
[18] A. S. Besicovitch, “A problem on topological transformation of the plane”, Fund. Math., 28 (1937), 61–65 | DOI | Zbl
[19] W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp. | MR | Zbl
[20] A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47 (1951), 38–45 | DOI | MR | Zbl
[21] E. Dymek, Transitive cylinder flows whose set of discrete points is of full Hausdorff dimension, arXiv: 1303.3099
[22] A. V. Kochergin, “New examples of Besicovitch transitive cylindrical cascades”, Mat. Sb., 209:9 (2018), 3–18 ; English transl. in Sb. Math., 209:9 (2018), 1257–1272 | MR | Zbl | DOI
[23] A. Ya. Khinchin, Continued fractions, 4th ed., Nauka, Moscow, 1978, 112 pp. ; English transl. of 3rd ed., The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | MR | Zbl
[24] A. V. Kochergin, “On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus”, Dokl. Akad. Nauk SSSR, 205:3 (1972), 515–518 ; English transl in Soviet Math. Dokl., 13 (1972), 949–952 | MR | Zbl
[25] A. V. Kochergin, “A mixing special flow over a circle rotation with almost Lipschitz function”, Mat. Sb., 193:3 (2002), 51–78 ; English transl. in Sb. Math., 193:3 (2002), 359–385 | DOI | MR | Zbl | DOI
[26] A. V. Kočergin (Kochergin), “Time changes in flows and mixing”, Izv. Akad. Nauk SSSR Ser. Mat., 37:6 (1973), 1275–1298 ; English transl. in Izv. Math., 7:6 (1973), 1273–1294 | MR | Zbl | DOI
[27] A. B. Antonevich and A. A. Shukur, “On the powers of operator generated by rotation”, J. Anal. Appl., 16:1 (2018), 57–67 | MR | Zbl
[28] I. U. Bronshtein, Nonautonomous dynamical systems, Shtiintsa, Kishinev, 1984, 292 pp. (Russian) | MR | Zbl
[29] A. B. Antonevich, Linear functional equations. Operator approach, Universitetskoe, Minsk, 1988, 232 pp. ; English transl., Oper. Theory Adv. Appl., 83, Birkhäuser Verlag, Basel, 1996, viii+179 pp. | MR | Zbl | DOI | MR | Zbl
[30] A. Antonevich and A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994, viii+504 pp. | MR | Zbl
[31] A. B. Antonevich and A. S. Shukur, “Estimations of the norm of the powers of the operator generated by irrational rotation”, Dokl. Nats. Akad. Nauk Belarusi, 61:1 (2017), 30–35 (Russian) | MR | Zbl
[32] A. A. Shukur, “Behaviour of the norms of powers of the operator generated by a rational rotation”, Vestn. Belarus. Gos. Univ. Ser. 1, 2016, no. 2, 110–115 (Russian)
[33] N. Karapetiants and S. Samko, Equations with involutive operators, Birkhäuser Boston, Inc., Boston, MA, 2001, xxiv+427 pp. | DOI | MR | Zbl
[34] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | Zbl
[35] A. B. Antonevich, “Changes of the spectrum under small perturbations of the operator”, Vestn. Belarus. Gos. Univ. Ser. 1, 1976, no. 3, 60–61 (Russian)
[36] I. Gelfand, “Zur Theorie der Charaktere der Abelschen topologischen Gruppen”, Mat. Sb., 9(51):1 (1941), 49–50 | MR | Zbl
[37] G. E. Shilov, “On a theorem of I. M. Gelfand and its generalizations”, Dokl. Akad. Nauk SSSR, 72 (1950), 641–644 (Russian) | MR | Zbl
[38] Yu. Lyubich, “Spectral localization, power boundedness and invariant subspaces under Ritt's type condition”, Studia Math., 134:2 (1999), 153–167 | DOI | MR | Zbl
[39] A. M. Gomilko and Ya. Zemánek, “On the uniform Kreiss resolvent condition”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 81–84 ; English transl. in Funct. Anal. Appl., 42:3 (2008), 230–233 | DOI | MR | Zbl | DOI
[40] O. Nevanlinna, “Resolvent conditions and powers of operators”, Studia Math., 145:2 (2001), 113–134 | DOI | MR | Zbl
[41] A. Gomilko and J. Zemánek, “On the strong Kreiss resolvent condition”, Complex Anal. Oper. Theory, 7:2 (2013), 421–435 | DOI | MR | Zbl
[42] E. M. Dyn'kin, “An operator calculus based on the Cauchy-Green formula”, Investigations on linear operators and function theory. III, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 30, Nauka, Leningrad branch, Leningrad, 1972, 33–39 ; English transl. in J. Soviet Math., 4:4 (1975), 329–334 | MR | Zbl | DOI
[43] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex analysis: theory and applications, 2nd ed., Editorial URSS, Moscow, 2000, 176 pp.; English transl. of 1st ed., revised by the authors, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | DOI | MR | Zbl
[44] A. B. Antonevich and A. A. Shukur, “Operators with exponential growth of the resolvent”, Tavricheskii Vestnink Informat. Mat., 2016, no. 3(32), 9–20 (Russian)
[45] B. Ja. Levin, Distribution of zeros of entire functions, Gostekhizdat, Moscow, 1956, 632 pp. ; English transl., Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | Zbl | MR | Zbl
[46] S. R. Treil', “Resolvent of the Toeplitz operator may increase arbitrarily fast”, Investigations on linear operators and function theory. III, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 157, Nauka, Leningrad branch, Leningrad, 1987, 175–177 ; English transl. in J. Soviet Math., 44:6 (1989), 868–869 | MR | Zbl | DOI