Hardy-Littlewood-Sobolev inequality for $p=1$
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 844-889

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{W}$ be a closed dilation and translation invariant subspace of the space of $\mathbb{R}^\ell$-valued Schwartz distributions in $d$ variables. We show that if the space $\mathcal{W}$ does not contain distributions of the type $a\otimes \delta_0$, $\delta_0$ being the Dirac delta, then the inequality $\|\operatorname{I}_\alpha [f]\|_{L_{d/(d-\alpha),1}}\lesssim \|f\|_{L_1}$ holds true for functions $f\in\mathcal{W}\cap L_1$ with a uniform constant; here $\operatorname{I}_\alpha$ is the Riesz potential of order $\alpha$ and $L_{p,1}$ is the Lorentz space. As particular cases, this result implies the inequality $\|\nabla^{m-1} f\|_{L_{d/(d-1),1}} \lesssim \|A f\|_{L_1}$, where $A$ is a cancelling elliptic differential operator of order $m$, and the inequality $\|\operatorname{I}_\alpha f\|_{L_{d/(d-\alpha),1}} \lesssim \|f\|_{L_1}$, where $f$ is a divergence free vector field. Bibliography: 59 titles.
Keywords: Hardy-Littlewood-Sobolev inequality, Bourgain-Brezis inequalities, cancelling differential operators.
@article{SM_2022_213_6_a5,
     author = {D. M. Stolyarov},
     title = {Hardy-Littlewood-Sobolev inequality for $p=1$},
     journal = {Sbornik. Mathematics},
     pages = {844--889},
     publisher = {mathdoc},
     volume = {213},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a5/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - Hardy-Littlewood-Sobolev inequality for $p=1$
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 844
EP  - 889
VL  - 213
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a5/
LA  - en
ID  - SM_2022_213_6_a5
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T Hardy-Littlewood-Sobolev inequality for $p=1$
%J Sbornik. Mathematics
%D 2022
%P 844-889
%V 213
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a5/
%G en
%F SM_2022_213_6_a5
D. M. Stolyarov. Hardy-Littlewood-Sobolev inequality for $p=1$. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 844-889. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a5/