Mots-clés : Hausdorff content
@article{SM_2022_213_6_a4,
author = {P. V. Paramonov},
title = {On metric properties of $C$-capacities associated with solutions of second-order strongly elliptic equations in $\pmb{\mathbb R}^2$},
journal = {Sbornik. Mathematics},
pages = {831--843},
year = {2022},
volume = {213},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a4/}
}
TY - JOUR
AU - P. V. Paramonov
TI - On metric properties of $C$-capacities associated with solutions of second-order strongly elliptic equations in $\pmb{\mathbb R}^2$
JO - Sbornik. Mathematics
PY - 2022
SP - 831
EP - 843
VL - 213
IS - 6
UR - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a4/
LA - en
ID - SM_2022_213_6_a4
ER -
%0 Journal Article
%A P. V. Paramonov
%T On metric properties of $C$-capacities associated with solutions of second-order strongly elliptic equations in $\pmb{\mathbb R}^2$
%J Sbornik. Mathematics
%D 2022
%P 831-843
%V 213
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a4/
%G en
%F SM_2022_213_6_a4
P. V. Paramonov. On metric properties of $C$-capacities associated with solutions of second-order strongly elliptic equations in $\pmb{\mathbb R}^2$. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 831-843. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a4/
[1] R. Harvey and J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl
[2] P. V. Paramonov, “New criteria for uniform approximability by harmonic functions on compact sets in $\mathbb R^2$”, Complex analysis and applications, Tr. Mat. Inst. Steklova, 298, MAIK “Nauka/Interperiodika”, Moscow, 2017, 216–226 ; English transl. in Proc. Steklov Inst. Math., 298 (2017), 201–211 | DOI | MR | Zbl | DOI
[3] M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Mat. Sb., 211:9 (2020), 60–104 ; English transl. in Sb. Math., 211:9 (2020), 1267–1309 | DOI | MR | Zbl | DOI
[4] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | Zbl
[5] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón-Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[6] P. V. Paramonov, “Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$”, Mat. Sb., 212:12 (2021), 77–94 ; English transl. in Sb. Math., 212:12 (2021), 1730–1745 | DOI | MR | Zbl | DOI
[7] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Mat. Sb., 199:1 (2008), 15–46 ; English transl. in Sb. Math., 199:1 (2008), 13–44 | DOI | MR | Zbl | DOI
[8] M. Ya. Mazalov, “Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$”, Izv. Ross. Akad. Nauk Ser. Mat., 85:3 (2021), 89–126 ; English transl. in Izv. Math., 85:3 (2021), 421–456 | DOI | MR | Zbl | DOI
[9] P. V. Paramonov and K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Mat. Sb., 190:2 (1999), 123–144 ; English transl. in Sb. Math., 190:2 (1999), 285–307 | DOI | MR | Zbl | DOI
[10] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl
[11] V. Ya. Èiderman, “Estimates for potentials and $\delta$-subharmonic functions outside exceptional sets”, Izv. Ross. Akad. Nauk Ser. Mat., 61:6 (1997), 181–218 ; English transl. in Izv. Math., 61:6 (1997), 1293–1329 | DOI | MR | Zbl | DOI
[12] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Uspekhi Mat. Nauk, 22:6(138) (1967), 141–199 ; English transl. in Russian Math. Surveys, 22:6 (1967), 139–200 | MR | Zbl | DOI
[13] G. M. Goluzin, Geometric theory of functions of a complex variable, 2nd ed., Nauka, Moscow, 1966, 628 pp. ; English transl., Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | Zbl | MR | Zbl