Self-affine $2$-attractors and tiles
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 794-830 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study two-digit attractors (2-attractors) in $\mathbb{R}^d$, which are self-affine compact sets defined by two affine contractions with the same linear part. They have widely been studied in the literature under various names (integer self-affine 2-tiles, twindragons, two-digit tiles, 2-reptiles and so on) due to many applications in approximation theory, in the construction of multivariate Haar systems and other wavelet bases, in discrete geometry and in number theory. We obtain a complete classification of isotropic 2-attractors in $\mathbb{R}^d$ and show that all of them are pairwise homeomorphic but not diffeomorphic. In the general, nonisotropic, case we prove that a 2-attractor is uniquely defined by the spectrum of the dilation matrix up to affine similarity. We estimate the number of different 2-attractors in $\mathbb{R}^d$ by analysing integer unitary expanding polynomials with free coefficient $\pm2$. The total number of such polynomials is estimated using the Mahler measure. We present several infinite series of such polynomials. For some 2-attractors their Hölder exponents are found. Some of our results are extended to attractors with an arbitrary number of digits. Bibliography: 63 titles.
Keywords: self-affine attractors, Haar systems, integer polynomials, stable polynomials.
Mots-clés : tiles
@article{SM_2022_213_6_a3,
     author = {T. I. Zaitseva and V. Yu. Protasov},
     title = {Self-affine $2$-attractors and tiles},
     journal = {Sbornik. Mathematics},
     pages = {794--830},
     year = {2022},
     volume = {213},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a3/}
}
TY  - JOUR
AU  - T. I. Zaitseva
AU  - V. Yu. Protasov
TI  - Self-affine $2$-attractors and tiles
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 794
EP  - 830
VL  - 213
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a3/
LA  - en
ID  - SM_2022_213_6_a3
ER  - 
%0 Journal Article
%A T. I. Zaitseva
%A V. Yu. Protasov
%T Self-affine $2$-attractors and tiles
%J Sbornik. Mathematics
%D 2022
%P 794-830
%V 213
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a3/
%G en
%F SM_2022_213_6_a3
T. I. Zaitseva; V. Yu. Protasov. Self-affine $2$-attractors and tiles. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 794-830. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a3/

[1] S. Akiyama, H. Brunotte, A. Pethő and J. M. Thuswaldner, “Generalized radix representations and dynamical systems. III”, Osaka J. Math., 45:2 (2008), 347–374 | MR | Zbl

[2] S. Akiyama and N. Gjini, “On the connectedness of self-affine attractors”, Arch. Math. (Basel), 82:2 (2004), 153–163 | DOI | MR | Zbl

[3] S. Akiyama and B. Loridant, “Boundary parametrization of planar self-affine tiles with collinear digit set”, Sci. China Math., 53:9 (2010), 2173–2194 | DOI | MR | Zbl

[4] S. Akiyama, B. Loridant and J. M. Thuswaldner, “Topology of planar self-affine tiles with collinear digit set”, J. Fractal Geom., 8:1 (2021), 53–93 ; arXiv: 1801.02957 | DOI | MR | Zbl

[5] S. Akiyama and A. Pethő, “On the distribution of polynomials with bounded roots. II. Polynomials with integer coefficients”, Unif. Distrib. Theory, 9:1 (2014), 5–19 | MR | Zbl

[6] S. Akiyama and J. M. Thuswaldner, “A survey on topological properties of tiles related to number systems”, Geom. Dedicata, 109:1 (2004), 89–105 | DOI | MR | Zbl

[7] C. Bandt, Combinatorial topology of three-dimensional self-affine tiles, arXiv: 1002.0710

[8] C. Bandt, “Self-similar sets. V. Integer matrices and fractal tilings of $\mathbb R^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562 | DOI | MR | Zbl

[9] C. Bandt and G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593 | DOI | MR | Zbl

[10] J. J. Benedetto and M. T. Leon, “The construction of multiple dyadic minimally supported frequency wavelets on $\mathbb R^d$”, The functional and harmonic analysis of wavelets and frames (San Antonio, TX 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 43–74 | DOI | MR | Zbl

[11] J. J. Benedetto and S. Sumetkijakan, “Tight frames and geometric properties of wavelet sets”, Adv. Comput. Math., 24:1–4 (2006), 35–56 | DOI | MR | Zbl

[12] C. Bandt and Y. Wang, “Disk-like self-affine tiles in $\mathbb R^2$”, Discrete Comput. Geom., 26:4 (2001), 591–601 | DOI | MR | Zbl

[13] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164, no. 781, Amer. Math. Soc., Providence, RI, 2003, vi+122 pp. | DOI | MR | Zbl

[14] A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp. | DOI | MR | Zbl

[15] M. Cotronei, D. Ghisi, M. Rossini and T. Sauer, “An anisotropic directional subdivision and multiresolution scheme”, Adv. Comput. Math., 41 (2015), 709–726 | DOI | MR | Zbl

[16] C. A. Cabrelli, C. Heil and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp. | DOI | MR | Zbl

[17] M. Charina and T. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291 | DOI | MR | Zbl

[18] M. Charina and V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821 | DOI | MR | Zbl

[19] A. Cohen, K. Gröchenig and L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255 | DOI | MR | Zbl

[20] G. R. Conner and J. M. Thuswaldner, “Self-affine manifolds”, Adv. Math., 289 (2016), 725–783 | DOI | MR | Zbl

[21] N. Desprez, Chaoscope, Software http://www.chaoscope.org/

[22] A. Dubickas and S. V. Konyagin, “On the number of polynomials of bounded measure”, Acta Arith., 86:4 (1998), 325–342 | DOI | MR | Zbl

[23] Qi-Rong Deng and Ka-sing Lau, “Connectedness of a class of planar self-affine tiles”, J. Math. Anal. Appl., 380:2 (2011), 493–500 | DOI | MR | Zbl

[24] Xingde Dai, D. R. Larson and D. M. Speegle, “Wavelet sets in $\mathbb R^n$”, J. Fourier Anal. Appl., 3:4 (1997), 451–456 | DOI | MR | Zbl

[25] A. Dubickas, “Counting integer reducible polynomials with bounded measure”, Appl. Anal. Discrete Math., 10:2 (2016), 308–324 | DOI | MR | Zbl

[26] Xiaoye Fu and J.-P. Gabardo, Self-affine scaling sets in $\mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015, vi+85 pp. | DOI | MR | Zbl

[27] W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274 | DOI | MR | Zbl

[28] A. M. Garsia, “Arithmetic properties of Bernoulli convolutions”, Trans. Amer. Math. Soc., 102:3 (1962), 409–432 | DOI | MR | Zbl

[29] G. Gelbrich, “Self-affine lattice reptiles with two pieces in $\mathbb R^n$”, Math. Nachr., 178:1 (1996), 129–134 | DOI | MR | Zbl

[30] R. F. Gundy and A. L. Jonsson, “Scaling functions on $\mathbb R^2$ for dilations of determinant $\pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62 | DOI | MR | Zbl

[31] C. Gröchenig and W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $\mathbf R^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568 | DOI | MR | Zbl

[32] K. Gröchenig and A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl

[33] Xing-Gang He and Ka-Sing Lau, “Characterization of tile digit sets with prime determinants”, Appl. Comput. Harmon. Anal., 16:3 (2004), 159–173 | DOI | MR | Zbl

[34] D. Hacon, N. C. Saldanha and J. J. P. Veerman, “Remarks on self-affine tilings”, Exp. Math., 3:4 (1994), 317–327 | DOI | MR | Zbl

[35] I. Kirat and Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304 | DOI | MR | Zbl

[36] I. Kirat and Ka-Sing Lau, “Classification of integral expanding matrices and self-affine tiles”, Discrete Comput. Geom., 28:1 (2002), 49–73 | DOI | MR | Zbl

[37] I. Kirat, Ka-Sing Lau and Hui Rao, “Expanding polynomials and connectedness of self-affine tiles”, Discrete Comput. Geom., 31:2 (2004), 275–286 | DOI | MR | Zbl

[38] A. Kravchenko and D. Mekhontsev, IFS Builder 3d, Software http://fractals.nsu.ru/builder3d_en.htm

[39] A. Krivoshein, V. Protasov and M. Skopina, Multivariate wavelets frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp. | DOI | MR | Zbl

[40] P. Kirschenhofer and J. M. Thuswaldner, “Shift radix systems—a survey”, Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, 1–59 | MR | Zbl

[41] P. Kirschenhofer and A. Thuswaldner, “Distribution results on polynomials with bounded roots”, Monatsh. Math., 185:4 (2018), 689–715 | DOI | MR | Zbl

[42] J. C. Lagarias and Yang Wang, “Haar type orthonormal wavelet bases in $\mathbf R^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14 | DOI | MR | Zbl

[43] J. C. Lagarias and Yang Wang, “Haar bases for $L^2(\mathbb R^n)$ and algebraic number theory”, J. Number Theory, 57:1 (1996), 181–197 | DOI | MR | Zbl

[44] J. C. Lagarias and Yang Wang, “Integral self-affine tiles in $\mathbb R^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102 | DOI | MR | Zbl

[45] J. Lagarias and Yang Wang, “Corrigendum/addendum: `Haar bases for $L_2(\mathbb R^n)$ and algebraic number theory'”, J. Number Theory, 76:2 (1999), 330–336 | DOI | MR | Zbl

[46] T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29, 26 pp. | DOI | MR | Zbl

[47] D. Mekhontsev, IFStile, Software http://ifstile.com/

[48] K. D. Merrill, “Simple wavelet sets in $\mathbb R^n$”, J. Geom. Anal., 25:2 (2015), 1295–1305 | DOI | MR | Zbl

[49] K. D. Merrill, Generalized multiresolution analyses, Lect. Notes Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2018, x+113 pp. | DOI | MR | Zbl

[50] F. Morgan, Geometric measure theory. A beginner's guide, Academic Press, Inc., Boston, MA, 1988, viii+145 pp. | MR | Zbl

[51] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Fizmatlit, Moscow, 2005, 613 pp. ; English transl., Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | Zbl | DOI | MR | Zbl

[52] Sze-Man Ngai, V. F. Sirvent, J. J. P. Veerman and Yang Wang, “On 2-reptiles in the plane”, Geom. Dedicata, 82:1–3 (2000), 325–344 | DOI | MR | Zbl

[53] V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Ross. Akad. Nauk Ser. Mat., 61:5 (1997), 99–136 ; English transl. in Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl | DOI

[54] V. Yu. Protasov, “Surface dimension, tiles, and synchronizing automata”, SIAM J. Math. Anal., 52:4 (2020), 3463–3486 | DOI | MR | Zbl

[55] H. Rademacher, “Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359 | DOI | MR | Zbl

[56] W. Steiner and J. M. Thuswaldner, “Rational self-affine tiles”, Trans. Amer. Math. Soc., 367:11 (2015), 7863–7894 | DOI | MR | Zbl

[57] J. M. Thuswaldner and Shu-qin Zhang, “On self-affine tiles whose boundary is a sphere”, Trans. Amer. Math. Soc., 373:1 (2020), 491–527 | DOI | MR | Zbl

[58] M. J. Uray, “Characterization of expansive polynomials by special determinants”, Publ. Math. Debrecen, 98:3-4 (2021), 379–399 | DOI | MR | Zbl

[59] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[60] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997, xii+261 pp. | DOI | MR | Zbl

[61] T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57 | DOI

[62] T. I. Zaitseva, “Simple tiles and attractors”, Mat. Sb., 211:9 (2020), 24–59 ; English transl. in Sb. Math., 211:9 (2020), 1233–1266 | DOI | MR | Zbl | DOI

[63] V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001, 14 pp. | DOI | MR | Zbl