Mots-clés : tiles
@article{SM_2022_213_6_a3,
author = {T. I. Zaitseva and V. Yu. Protasov},
title = {Self-affine $2$-attractors and tiles},
journal = {Sbornik. Mathematics},
pages = {794--830},
year = {2022},
volume = {213},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a3/}
}
T. I. Zaitseva; V. Yu. Protasov. Self-affine $2$-attractors and tiles. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 794-830. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a3/
[1] S. Akiyama, H. Brunotte, A. Pethő and J. M. Thuswaldner, “Generalized radix representations and dynamical systems. III”, Osaka J. Math., 45:2 (2008), 347–374 | MR | Zbl
[2] S. Akiyama and N. Gjini, “On the connectedness of self-affine attractors”, Arch. Math. (Basel), 82:2 (2004), 153–163 | DOI | MR | Zbl
[3] S. Akiyama and B. Loridant, “Boundary parametrization of planar self-affine tiles with collinear digit set”, Sci. China Math., 53:9 (2010), 2173–2194 | DOI | MR | Zbl
[4] S. Akiyama, B. Loridant and J. M. Thuswaldner, “Topology of planar self-affine tiles with collinear digit set”, J. Fractal Geom., 8:1 (2021), 53–93 ; arXiv: 1801.02957 | DOI | MR | Zbl
[5] S. Akiyama and A. Pethő, “On the distribution of polynomials with bounded roots. II. Polynomials with integer coefficients”, Unif. Distrib. Theory, 9:1 (2014), 5–19 | MR | Zbl
[6] S. Akiyama and J. M. Thuswaldner, “A survey on topological properties of tiles related to number systems”, Geom. Dedicata, 109:1 (2004), 89–105 | DOI | MR | Zbl
[7] C. Bandt, Combinatorial topology of three-dimensional self-affine tiles, arXiv: 1002.0710
[8] C. Bandt, “Self-similar sets. V. Integer matrices and fractal tilings of $\mathbb R^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562 | DOI | MR | Zbl
[9] C. Bandt and G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593 | DOI | MR | Zbl
[10] J. J. Benedetto and M. T. Leon, “The construction of multiple dyadic minimally supported frequency wavelets on $\mathbb R^d$”, The functional and harmonic analysis of wavelets and frames (San Antonio, TX 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 43–74 | DOI | MR | Zbl
[11] J. J. Benedetto and S. Sumetkijakan, “Tight frames and geometric properties of wavelet sets”, Adv. Comput. Math., 24:1–4 (2006), 35–56 | DOI | MR | Zbl
[12] C. Bandt and Y. Wang, “Disk-like self-affine tiles in $\mathbb R^2$”, Discrete Comput. Geom., 26:4 (2001), 591–601 | DOI | MR | Zbl
[13] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164, no. 781, Amer. Math. Soc., Providence, RI, 2003, vi+122 pp. | DOI | MR | Zbl
[14] A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp. | DOI | MR | Zbl
[15] M. Cotronei, D. Ghisi, M. Rossini and T. Sauer, “An anisotropic directional subdivision and multiresolution scheme”, Adv. Comput. Math., 41 (2015), 709–726 | DOI | MR | Zbl
[16] C. A. Cabrelli, C. Heil and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp. | DOI | MR | Zbl
[17] M. Charina and T. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291 | DOI | MR | Zbl
[18] M. Charina and V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821 | DOI | MR | Zbl
[19] A. Cohen, K. Gröchenig and L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255 | DOI | MR | Zbl
[20] G. R. Conner and J. M. Thuswaldner, “Self-affine manifolds”, Adv. Math., 289 (2016), 725–783 | DOI | MR | Zbl
[21] N. Desprez, Chaoscope, Software http://www.chaoscope.org/
[22] A. Dubickas and S. V. Konyagin, “On the number of polynomials of bounded measure”, Acta Arith., 86:4 (1998), 325–342 | DOI | MR | Zbl
[23] Qi-Rong Deng and Ka-sing Lau, “Connectedness of a class of planar self-affine tiles”, J. Math. Anal. Appl., 380:2 (2011), 493–500 | DOI | MR | Zbl
[24] Xingde Dai, D. R. Larson and D. M. Speegle, “Wavelet sets in $\mathbb R^n$”, J. Fourier Anal. Appl., 3:4 (1997), 451–456 | DOI | MR | Zbl
[25] A. Dubickas, “Counting integer reducible polynomials with bounded measure”, Appl. Anal. Discrete Math., 10:2 (2016), 308–324 | DOI | MR | Zbl
[26] Xiaoye Fu and J.-P. Gabardo, Self-affine scaling sets in $\mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015, vi+85 pp. | DOI | MR | Zbl
[27] W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274 | DOI | MR | Zbl
[28] A. M. Garsia, “Arithmetic properties of Bernoulli convolutions”, Trans. Amer. Math. Soc., 102:3 (1962), 409–432 | DOI | MR | Zbl
[29] G. Gelbrich, “Self-affine lattice reptiles with two pieces in $\mathbb R^n$”, Math. Nachr., 178:1 (1996), 129–134 | DOI | MR | Zbl
[30] R. F. Gundy and A. L. Jonsson, “Scaling functions on $\mathbb R^2$ for dilations of determinant $\pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62 | DOI | MR | Zbl
[31] C. Gröchenig and W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $\mathbf R^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568 | DOI | MR | Zbl
[32] K. Gröchenig and A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl
[33] Xing-Gang He and Ka-Sing Lau, “Characterization of tile digit sets with prime determinants”, Appl. Comput. Harmon. Anal., 16:3 (2004), 159–173 | DOI | MR | Zbl
[34] D. Hacon, N. C. Saldanha and J. J. P. Veerman, “Remarks on self-affine tilings”, Exp. Math., 3:4 (1994), 317–327 | DOI | MR | Zbl
[35] I. Kirat and Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304 | DOI | MR | Zbl
[36] I. Kirat and Ka-Sing Lau, “Classification of integral expanding matrices and self-affine tiles”, Discrete Comput. Geom., 28:1 (2002), 49–73 | DOI | MR | Zbl
[37] I. Kirat, Ka-Sing Lau and Hui Rao, “Expanding polynomials and connectedness of self-affine tiles”, Discrete Comput. Geom., 31:2 (2004), 275–286 | DOI | MR | Zbl
[38] A. Kravchenko and D. Mekhontsev, IFS Builder 3d, Software http://fractals.nsu.ru/builder3d_en.htm
[39] A. Krivoshein, V. Protasov and M. Skopina, Multivariate wavelets frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp. | DOI | MR | Zbl
[40] P. Kirschenhofer and J. M. Thuswaldner, “Shift radix systems—a survey”, Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, 1–59 | MR | Zbl
[41] P. Kirschenhofer and A. Thuswaldner, “Distribution results on polynomials with bounded roots”, Monatsh. Math., 185:4 (2018), 689–715 | DOI | MR | Zbl
[42] J. C. Lagarias and Yang Wang, “Haar type orthonormal wavelet bases in $\mathbf R^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14 | DOI | MR | Zbl
[43] J. C. Lagarias and Yang Wang, “Haar bases for $L^2(\mathbb R^n)$ and algebraic number theory”, J. Number Theory, 57:1 (1996), 181–197 | DOI | MR | Zbl
[44] J. C. Lagarias and Yang Wang, “Integral self-affine tiles in $\mathbb R^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102 | DOI | MR | Zbl
[45] J. Lagarias and Yang Wang, “Corrigendum/addendum: `Haar bases for $L_2(\mathbb R^n)$ and algebraic number theory'”, J. Number Theory, 76:2 (1999), 330–336 | DOI | MR | Zbl
[46] T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29, 26 pp. | DOI | MR | Zbl
[47] D. Mekhontsev, IFStile, Software http://ifstile.com/
[48] K. D. Merrill, “Simple wavelet sets in $\mathbb R^n$”, J. Geom. Anal., 25:2 (2015), 1295–1305 | DOI | MR | Zbl
[49] K. D. Merrill, Generalized multiresolution analyses, Lect. Notes Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2018, x+113 pp. | DOI | MR | Zbl
[50] F. Morgan, Geometric measure theory. A beginner's guide, Academic Press, Inc., Boston, MA, 1988, viii+145 pp. | MR | Zbl
[51] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Fizmatlit, Moscow, 2005, 613 pp. ; English transl., Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | Zbl | DOI | MR | Zbl
[52] Sze-Man Ngai, V. F. Sirvent, J. J. P. Veerman and Yang Wang, “On 2-reptiles in the plane”, Geom. Dedicata, 82:1–3 (2000), 325–344 | DOI | MR | Zbl
[53] V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Ross. Akad. Nauk Ser. Mat., 61:5 (1997), 99–136 ; English transl. in Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl | DOI
[54] V. Yu. Protasov, “Surface dimension, tiles, and synchronizing automata”, SIAM J. Math. Anal., 52:4 (2020), 3463–3486 | DOI | MR | Zbl
[55] H. Rademacher, “Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359 | DOI | MR | Zbl
[56] W. Steiner and J. M. Thuswaldner, “Rational self-affine tiles”, Trans. Amer. Math. Soc., 367:11 (2015), 7863–7894 | DOI | MR | Zbl
[57] J. M. Thuswaldner and Shu-qin Zhang, “On self-affine tiles whose boundary is a sphere”, Trans. Amer. Math. Soc., 373:1 (2020), 491–527 | DOI | MR | Zbl
[58] M. J. Uray, “Characterization of expansive polynomials by special determinants”, Publ. Math. Debrecen, 98:3-4 (2021), 379–399 | DOI | MR | Zbl
[59] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl
[60] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997, xii+261 pp. | DOI | MR | Zbl
[61] T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57 | DOI
[62] T. I. Zaitseva, “Simple tiles and attractors”, Mat. Sb., 211:9 (2020), 24–59 ; English transl. in Sb. Math., 211:9 (2020), 1233–1266 | DOI | MR | Zbl | DOI
[63] V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001, 14 pp. | DOI | MR | Zbl