An upper bound for the least critical values of finite Blaschke products
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 744-751
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the finite Blaschke products $B$ of degree $n\geqslant2$ such that $B(0)=0$ and $ B'(0)\ne0$, the supremum of the minimum moduli of their critical values is found which depends only on $n$ and $|B'(0)|$.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
rational functions, Blaschke products, critical values, Riemann surfaces, dissymmetrization.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_6_a1,
     author = {V. N. Dubinin},
     title = {An upper bound for the least critical values of finite {Blaschke} products},
     journal = {Sbornik. Mathematics},
     pages = {744--751},
     publisher = {mathdoc},
     volume = {213},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a1/}
}
                      
                      
                    V. N. Dubinin. An upper bound for the least critical values of finite Blaschke products. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 744-751. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a1/
