An upper bound for the least critical values of finite Blaschke products
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 744-751

Voir la notice de l'article provenant de la source Math-Net.Ru

For the finite Blaschke products $B$ of degree $n\geqslant2$ such that $B(0)=0$ and $ B'(0)\ne0$, the supremum of the minimum moduli of their critical values is found which depends only on $n$ and $|B'(0)|$. Bibliography: 12 titles.
Keywords: rational functions, Blaschke products, critical values, Riemann surfaces, dissymmetrization.
@article{SM_2022_213_6_a1,
     author = {V. N. Dubinin},
     title = {An upper bound for the least critical values of finite {Blaschke} products},
     journal = {Sbornik. Mathematics},
     pages = {744--751},
     publisher = {mathdoc},
     volume = {213},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - An upper bound for the least critical values of finite Blaschke products
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 744
EP  - 751
VL  - 213
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a1/
LA  - en
ID  - SM_2022_213_6_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T An upper bound for the least critical values of finite Blaschke products
%J Sbornik. Mathematics
%D 2022
%P 744-751
%V 213
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a1/
%G en
%F SM_2022_213_6_a1
V. N. Dubinin. An upper bound for the least critical values of finite Blaschke products. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 744-751. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a1/