The $p$-convexity functor for $L_p(X)$-spaces
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 734-743
Voir la notice de l'article provenant de la source Math-Net.Ru
A construction for transforming an arbitrary $L_p(X)$-norm on a normed space $E$ into a $p$-convex norm is put forward. By applying this construction to the projective tensor norm, an explicit formula for the maximal $p$-convex $L_p(X)$-norm on $E$ is obtained.
Bibliography: 9 titles.
Keywords:
$L_p$-space, $L_p$-boundedness, $p$-convexity.
@article{SM_2022_213_6_a0,
author = {N. V. Volosova},
title = {The $p$-convexity functor for $L_p(X)$-spaces},
journal = {Sbornik. Mathematics},
pages = {734--743},
publisher = {mathdoc},
volume = {213},
number = {6},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/}
}
N. V. Volosova. The $p$-convexity functor for $L_p(X)$-spaces. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 734-743. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/