The $p$-convexity functor for $L_p(X)$-spaces
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 734-743

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction for transforming an arbitrary $L_p(X)$-norm on a normed space $E$ into a $p$-convex norm is put forward. By applying this construction to the projective tensor norm, an explicit formula for the maximal $p$-convex $L_p(X)$-norm on $E$ is obtained. Bibliography: 9 titles.
Keywords: $L_p$-space, $L_p$-boundedness, $p$-convexity.
@article{SM_2022_213_6_a0,
     author = {N. V. Volosova},
     title = {The $p$-convexity functor for $L_p(X)$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {734--743},
     publisher = {mathdoc},
     volume = {213},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/}
}
TY  - JOUR
AU  - N. V. Volosova
TI  - The $p$-convexity functor for $L_p(X)$-spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 734
EP  - 743
VL  - 213
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/
LA  - en
ID  - SM_2022_213_6_a0
ER  - 
%0 Journal Article
%A N. V. Volosova
%T The $p$-convexity functor for $L_p(X)$-spaces
%J Sbornik. Mathematics
%D 2022
%P 734-743
%V 213
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/
%G en
%F SM_2022_213_6_a0
N. V. Volosova. The $p$-convexity functor for $L_p(X)$-spaces. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 734-743. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/