The $p$-convexity functor for $L_p(X)$-spaces
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 734-743 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A construction for transforming an arbitrary $L_p(X)$-norm on a normed space $E$ into a $p$-convex norm is put forward. By applying this construction to the projective tensor norm, an explicit formula for the maximal $p$-convex $L_p(X)$-norm on $E$ is obtained. Bibliography: 9 titles.
Keywords: $L_p$-space, $L_p$-boundedness, $p$-convexity.
@article{SM_2022_213_6_a0,
     author = {N. V. Volosova},
     title = {The $p$-convexity functor for $L_p(X)$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {734--743},
     year = {2022},
     volume = {213},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/}
}
TY  - JOUR
AU  - N. V. Volosova
TI  - The $p$-convexity functor for $L_p(X)$-spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 734
EP  - 743
VL  - 213
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/
LA  - en
ID  - SM_2022_213_6_a0
ER  - 
%0 Journal Article
%A N. V. Volosova
%T The $p$-convexity functor for $L_p(X)$-spaces
%J Sbornik. Mathematics
%D 2022
%P 734-743
%V 213
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/
%G en
%F SM_2022_213_6_a0
N. V. Volosova. The $p$-convexity functor for $L_p(X)$-spaces. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 734-743. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a0/

[1] A. Lambert, Operatorfolgenräume, Ph.D. thesis, Univ. Saarlandes, Saarbrüken, 2002, viii+184 pp.

[2] E. G. Effros and Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, The Clarendon Press, Oxford Univ. Press, New York, 2000, xvi+363 pp. | MR | Zbl

[3] H. G. Dales and M. E. Polyakov, Multi-normed spaces, Dissertationes Math. (Rozprawy Mat.), 488, Polish Acad. Sci., Warsaw, 2012, 165 pp. | DOI | MR | Zbl

[4] H. G. Dales, M. Daws, H. L. Pham and P. Ramsden, “Multi-norms and the injectivity of $L^p(G)$”, J. Lond. Math. Soc. (2), 86:3 (2012), 779–809 | DOI | MR | Zbl

[5] H. G. Dales, M. Daws, H. L. Pham and P. Ramsden, Equivalence of multi-norms, Dissertationes Math. (Rozprawy Mat.), 498, Polish Acad. Sci., Warsaw, 2014, 53 pp. | DOI | MR | Zbl

[6] H. G. Dales, N. J. Laustsen, T. Oikhberg and V. G. Troitsky, Multi-norms and Banach lattices, Dissertationes Math. (Rozprawy Mat.), 524, Polish Acad. Sci., Warsaw, 2017, 115 pp. | DOI | MR | Zbl

[7] A. Ya. Helemskii, “Structures on the way from classical to quantum spaces and their tensor products”, Adv. Oper. Theory, 2:4 (2017), 447–467 | DOI | MR | Zbl

[8] A. Ya. Helemskii, “Multi-normed spaces based on non-discrete measures and their tensor products”, Izv. Ross. Akad. Nauk Ser. Mat., 82:2 (2018), 194–216 ; English transl. in Izv. Math., 82:2 (2018), 428–449 | DOI | MR | Zbl | DOI

[9] A. Ya. Helemskii, Quantum functional analysis. Non-coordinate approach, Moscow Center for continuous Mathematical Education, Moscow, 2009, 303 pp.; English transl., Univ. Lecture Ser., 56, Amer. Math. Soc., Providence, RI, 2010, xviii+241 pp. | DOI | MR | Zbl