@article{SM_2022_213_5_a6,
author = {B. N. Khabibullin},
title = {Integrals of a~difference of subharmonic functions against measures and the {Nevanlinna} characteristic},
journal = {Sbornik. Mathematics},
pages = {694--733},
year = {2022},
volume = {213},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a6/}
}
B. N. Khabibullin. Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 694-733. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a6/
[1] A. Edrei and W. H. J. Fuchs, “Bounds for the number of deficient values of certain classes of meromorphic functions”, Proc. London Math. Soc. (3), 12 (1962), 315–344 | DOI | MR | Zbl
[2] A. A. Goldberg and I. V. Ostrovskii, Value distribution of meromorphic functions, Nauka, Moscow, 1970, 592 pp. ; English transl., Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 2008, xvi+488 pp. | MR | Zbl | DOI | MR | Zbl
[3] A. F. Grishin and M. L. Sodin, “Growth along a ray, distribution of the zeros of an entire function of finite order with respect to the argument, and a uniqueness theorem”, Function theory, functional analysis and applications, 50, Vyssha Shkola, Khar'kov, 1988, 47–61 ; English transl. in J. Soviet Math., 49:6 (1990), 1269–1279 | MR | Zbl | DOI
[4] A. F. Grishin and T. I. Malyutina, “New formulae for the indicators of subharmonic functions”, Mat. Fiz. Anal. Geom., 12:1 (2005), 25–72 (Russian) | MR | Zbl
[5] L. A. Gabdrakhmanova and B. N. Khabibullin, “A small intervals theorem for subharmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 15–24 ; English transl. in Russian Math. (Iz. VUZ), 64:9 (2020), 12–20 | DOI | MR | Zbl | DOI
[6] B. N. Khabibullin, “Integrals of subharmonic functions and their differences with weight over small sets on a ray”, Mat. Stud., 54:2 (2020), 162–171 | DOI | MR | Zbl
[7] M. Girnyk, “Planar Lebesgue measure of exceptional set in approximation of subharmonic functions”, Zh. Mat. Fiz. Anal. Geom., 5:4 (2009), 347–358 | MR
[8] R. Nevanlinna, Le théoremè de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929, vii+174 pp. | MR | Zbl
[9] B. N. Khabibullin, “Nevanlinna characteristic and integral inequalities involving maximal radial characteristic for meromorphic functions and differences of subharmonic functions”, Algebra in Analiz, 34:2 (2022), 152–184 (Russian)
[10] G. Valiron, Lectures on the general theory of integral functions, Chelsea Pub. Co., New York, 1949, xi+208 pp.
[11] B. Ja. Levin, Distribution of zeros of entire functions, Gostekhizdat, Moscow, 1956, 632 pp. ; English transl., Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | Zbl | MR | Zbl
[12] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[13] B. N. Khabibullin, “A generalization of proximate order”, Dokl. Bashkir. Univ., 5:1 (2020), 1–6 (Russian) | DOI
[14] M. G. Arsove, “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl
[15] M. G. Arsove, “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551 | DOI | MR | Zbl
[16] A. F. Grishin, Nguyen Van Quynh and I. V. Poedintseva, “Representation theorems for $\delta$-subharmonic functions”, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 1133:70 (2014), 56–75 (Russian) | Zbl
[17] B. N. Khabibullin and A. P. Rozit, “On the distribution of zero sets of holomorphic functions”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 26–42 ; English transl. in Funct. Anal. Appl., 52:1 (2018), 21–34 | DOI | MR | Zbl | DOI
[18] B. N. Khabibullin, “Integrals with a meromorphic function or the difference of subharmonic functions over discs and planar small sets”, Lobachevskii J. Math., 42:6 (2021), 1175–1182 | DOI | MR | Zbl
[19] W. K. Hayman, Subharmonic functions, v. II, London Math. Soc. Monogr., 20, Academic Press, Inc., London, 1989, i–xxvi and 285–875 pp. | MR | Zbl
[20] B. N. Khabibullin, “The logarithm of the modulus of an entire function as a minorant for a subharmonic function outside a small exceptional set”, Azerb. J. Math., 11:2 (2021), 48–59 | MR | Zbl
[21] B. N. Khabibullin, “Liouville-type theorems for functions of finite order”, Ufimsk. Mat. Zh., 12:4 (2020), 117–121 ; English transl. in Ufa Math. J., 12:4 (2020), 114–118 | Zbl | DOI | MR
[22] B. N. Khabibullin, “Global boundedness of functions of finite order that are bounded outside small sets”, Mat. Sb., 212:11 (2021), 116–127 ; English transl. in Sb. Math., 212:11 (2021), 1615–1625 | DOI | MR | Zbl | DOI
[23] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | Zbl
[24] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. | MR | Zbl
[25] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl
[26] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl
[27] W. K. Hayman and P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976, xvii+284 pp. | MR | Zbl
[28] L. L. Helms, Introduction to potential theory, Pure Appl. Math., XXII, Wiley Interscience [A division of John Wiley Sons, Inc.], New York–London–Sydney, 1969, ix+282 pp. | MR | Zbl
[29] V. Azarin, Growth theory of subharmonic functions, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009, vi+259 pp. | DOI | MR | Zbl
[30] E. M. Chirka, “Potentials on a compact Riemann surface”, Complex analysis, mathematical physics and applications, Tr. Mat. Inst. Steklov., 301, MAIK “Nauka/Interperiodika”, Moscow, 2018, 287–319 ; English transl. in Proc. Steklov Inst. Math., 301 (2018), 272–303 | DOI | MR | Zbl | DOI
[31] I. I. Privalov, “A generalization of Jensen's formula. I”, Izv. Akad. Nauk SSSR Ser. VII Otd. Mat. Estestv. Nauk, 1935, no. 6–7, 837–847 (Russian) | Zbl
[32] I. I. Privalov, “A generalization of Jensen's formula. II”, Izv. Akad. Nauk SSSR Ser. VII Otd. Mat. Estestv. Nauk, 1935, no. 6–7, 848–856 (Russian) | Zbl
[33] I. I. Privalov, Subharmonic functions, ONTI, Moscow–Leningrad, 1937, 200 pp. (Russian)
[34] B. N. Khabibullin and A. V. Shmeleva, “Balayage of measures and subharmonic functions on a system of rays. I. The classical case”, Algebra i Analiz, 31:1 (2019), 156–210 ; English transl. in St. Petersburg Math. J., 31:1 (2020), 117–156 | MR | Zbl | DOI
[35] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1967, v+151 pp. | MR | Zbl
[36] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, London–New York, 1970, viii+179 pp. | MR | Zbl
[37] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996, xii+366 pp. | DOI | MR | Zbl
[38] V. Ya. Èiderman, “Cartan-type estimates for potentials with Cauchy kernels and real-valued kernels”, Mat. Sb., 198:8 (2007), 115–160 ; English transl. in Sb. Math., 198:8 (2007), 1175–1220 | DOI | MR | Zbl | DOI
[39] A. L. Volberg and V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Uspekhi Mat. Nauk, 68:6(414) (2013), 3–58 ; English transl. in Russian Math. Surveys, 68:6 (2013), 973–1026 | DOI | MR | Zbl | DOI
[40] A. A. Tuzhilin, Hausdorff measure: lost in translation, 2017 ; English transl., 2017, arXiv: http://dfgm.math.msu.su/files/tuzhilin/HausdorffMeasureDef.pdf1710.08272
[41] H. Federer, “Surface area. I”, Trans. Amer. Math. Soc., 55 (1944), 420–437 ; II, 438–456 | DOI | MR | Zbl | DOI | MR
[42] F. Morgan, Geometric measure theory, A beginner's guide, 4th ed., Elsevier/Academic Press, Amsterdam, 2009, viii+249 pp. | MR | Zbl