Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 694-733 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral inequalities for integrals of differences of subharmonic functions against Borel measures on balls in multidimensional Euclidean spaces are obtained. These integrals are estimated from above in terms of the product of the Nevanlinna characteristic of the function and various characteristics of the Borel measure and its support. The main theorem, which is a criterion concerning such estimates, presents several equivalent statements of different character. All results are new for the logarithms of the moduli of meromorphic functions on discs in the complex plane. They cover all preceding results, which go back to the classical small arcs lemma of Edrei and Fuchs, as special cases. Integrals against Borel measures with support on fractal sets are also allowed; in this case estimates are in terms of the Hausdorff measure and Hausdorff content of the support of the measure. Special cases of functions on the whole complex plane or space, or in the unit disc or ball, which are important for applications are distinguished, as well as cases involving integration against arc length over subsets of Lipschitz curves and against surface area over subsets of Lipschitz hypersurfaces. Bibliography: 42 titles.
Keywords: meromorphic functions, difference of subharmonic functions, Nevanlinna characteristic, Hausdorff measure, Lipschitz curves and surfaces.
@article{SM_2022_213_5_a6,
     author = {B. N. Khabibullin},
     title = {Integrals of a~difference of subharmonic functions against measures and the {Nevanlinna} characteristic},
     journal = {Sbornik. Mathematics},
     pages = {694--733},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 694
EP  - 733
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a6/
LA  - en
ID  - SM_2022_213_5_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic
%J Sbornik. Mathematics
%D 2022
%P 694-733
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a6/
%G en
%F SM_2022_213_5_a6
B. N. Khabibullin. Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 694-733. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a6/

[1] A. Edrei and W. H. J. Fuchs, “Bounds for the number of deficient values of certain classes of meromorphic functions”, Proc. London Math. Soc. (3), 12 (1962), 315–344 | DOI | MR | Zbl

[2] A. A. Goldberg and I. V. Ostrovskii, Value distribution of meromorphic functions, Nauka, Moscow, 1970, 592 pp. ; English transl., Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 2008, xvi+488 pp. | MR | Zbl | DOI | MR | Zbl

[3] A. F. Grishin and M. L. Sodin, “Growth along a ray, distribution of the zeros of an entire function of finite order with respect to the argument, and a uniqueness theorem”, Function theory, functional analysis and applications, 50, Vyssha Shkola, Khar'kov, 1988, 47–61 ; English transl. in J. Soviet Math., 49:6 (1990), 1269–1279 | MR | Zbl | DOI

[4] A. F. Grishin and T. I. Malyutina, “New formulae for the indicators of subharmonic functions”, Mat. Fiz. Anal. Geom., 12:1 (2005), 25–72 (Russian) | MR | Zbl

[5] L. A. Gabdrakhmanova and B. N. Khabibullin, “A small intervals theorem for subharmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 15–24 ; English transl. in Russian Math. (Iz. VUZ), 64:9 (2020), 12–20 | DOI | MR | Zbl | DOI

[6] B. N. Khabibullin, “Integrals of subharmonic functions and their differences with weight over small sets on a ray”, Mat. Stud., 54:2 (2020), 162–171 | DOI | MR | Zbl

[7] M. Girnyk, “Planar Lebesgue measure of exceptional set in approximation of subharmonic functions”, Zh. Mat. Fiz. Anal. Geom., 5:4 (2009), 347–358 | MR

[8] R. Nevanlinna, Le théoremè de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929, vii+174 pp. | MR | Zbl

[9] B. N. Khabibullin, “Nevanlinna characteristic and integral inequalities involving maximal radial characteristic for meromorphic functions and differences of subharmonic functions”, Algebra in Analiz, 34:2 (2022), 152–184 (Russian)

[10] G. Valiron, Lectures on the general theory of integral functions, Chelsea Pub. Co., New York, 1949, xi+208 pp.

[11] B. Ja. Levin, Distribution of zeros of entire functions, Gostekhizdat, Moscow, 1956, 632 pp. ; English transl., Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | Zbl | MR | Zbl

[12] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[13] B. N. Khabibullin, “A generalization of proximate order”, Dokl. Bashkir. Univ., 5:1 (2020), 1–6 (Russian) | DOI

[14] M. G. Arsove, “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl

[15] M. G. Arsove, “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551 | DOI | MR | Zbl

[16] A. F. Grishin, Nguyen Van Quynh and I. V. Poedintseva, “Representation theorems for $\delta$-subharmonic functions”, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 1133:70 (2014), 56–75 (Russian) | Zbl

[17] B. N. Khabibullin and A. P. Rozit, “On the distribution of zero sets of holomorphic functions”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 26–42 ; English transl. in Funct. Anal. Appl., 52:1 (2018), 21–34 | DOI | MR | Zbl | DOI

[18] B. N. Khabibullin, “Integrals with a meromorphic function or the difference of subharmonic functions over discs and planar small sets”, Lobachevskii J. Math., 42:6 (2021), 1175–1182 | DOI | MR | Zbl

[19] W. K. Hayman, Subharmonic functions, v. II, London Math. Soc. Monogr., 20, Academic Press, Inc., London, 1989, i–xxvi and 285–875 pp. | MR | Zbl

[20] B. N. Khabibullin, “The logarithm of the modulus of an entire function as a minorant for a subharmonic function outside a small exceptional set”, Azerb. J. Math., 11:2 (2021), 48–59 | MR | Zbl

[21] B. N. Khabibullin, “Liouville-type theorems for functions of finite order”, Ufimsk. Mat. Zh., 12:4 (2020), 117–121 ; English transl. in Ufa Math. J., 12:4 (2020), 114–118 | Zbl | DOI | MR

[22] B. N. Khabibullin, “Global boundedness of functions of finite order that are bounded outside small sets”, Mat. Sb., 212:11 (2021), 116–127 ; English transl. in Sb. Math., 212:11 (2021), 1615–1625 | DOI | MR | Zbl | DOI

[23] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | Zbl

[24] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. | MR | Zbl

[25] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl

[26] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl

[27] W. K. Hayman and P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976, xvii+284 pp. | MR | Zbl

[28] L. L. Helms, Introduction to potential theory, Pure Appl. Math., XXII, Wiley Interscience [A division of John Wiley Sons, Inc.], New York–London–Sydney, 1969, ix+282 pp. | MR | Zbl

[29] V. Azarin, Growth theory of subharmonic functions, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009, vi+259 pp. | DOI | MR | Zbl

[30] E. M. Chirka, “Potentials on a compact Riemann surface”, Complex analysis, mathematical physics and applications, Tr. Mat. Inst. Steklov., 301, MAIK “Nauka/Interperiodika”, Moscow, 2018, 287–319 ; English transl. in Proc. Steklov Inst. Math., 301 (2018), 272–303 | DOI | MR | Zbl | DOI

[31] I. I. Privalov, “A generalization of Jensen's formula. I”, Izv. Akad. Nauk SSSR Ser. VII Otd. Mat. Estestv. Nauk, 1935, no. 6–7, 837–847 (Russian) | Zbl

[32] I. I. Privalov, “A generalization of Jensen's formula. II”, Izv. Akad. Nauk SSSR Ser. VII Otd. Mat. Estestv. Nauk, 1935, no. 6–7, 848–856 (Russian) | Zbl

[33] I. I. Privalov, Subharmonic functions, ONTI, Moscow–Leningrad, 1937, 200 pp. (Russian)

[34] B. N. Khabibullin and A. V. Shmeleva, “Balayage of measures and subharmonic functions on a system of rays. I. The classical case”, Algebra i Analiz, 31:1 (2019), 156–210 ; English transl. in St. Petersburg Math. J., 31:1 (2020), 117–156 | MR | Zbl | DOI

[35] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1967, v+151 pp. | MR | Zbl

[36] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, London–New York, 1970, viii+179 pp. | MR | Zbl

[37] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996, xii+366 pp. | DOI | MR | Zbl

[38] V. Ya. Èiderman, “Cartan-type estimates for potentials with Cauchy kernels and real-valued kernels”, Mat. Sb., 198:8 (2007), 115–160 ; English transl. in Sb. Math., 198:8 (2007), 1175–1220 | DOI | MR | Zbl | DOI

[39] A. L. Volberg and V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Uspekhi Mat. Nauk, 68:6(414) (2013), 3–58 ; English transl. in Russian Math. Surveys, 68:6 (2013), 973–1026 | DOI | MR | Zbl | DOI

[40] A. A. Tuzhilin, Hausdorff measure: lost in translation, 2017 ; English transl., 2017, arXiv: http://dfgm.math.msu.su/files/tuzhilin/HausdorffMeasureDef.pdf1710.08272

[41] H. Federer, “Surface area. I”, Trans. Amer. Math. Soc., 55 (1944), 420–437 ; II, 438–456 | DOI | MR | Zbl | DOI | MR

[42] F. Morgan, Geometric measure theory, A beginner's guide, 4th ed., Elsevier/Academic Press, Amsterdam, 2009, viii+249 pp. | MR | Zbl