Central extensions and the Riemann-Roch theorem on algebraic surfaces
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693

Voir la notice de l'article provenant de la source Math-Net.Ru

We study canonical central extensions of the general linear group over the ring of adeles on a smooth projective algebraic surface $X$ by means of the group of integers. Via these central extensions and the adelic transition matrices of a rank $n$ locally free sheaf of $\mathcal{O}_X$-modules we obtain a local (adelic) decomposition for the difference of Euler characteristics of this sheaf and the sheaf $\mathcal{O}_X^n$. Two distinct calculations of this difference lead to the Riemann-Roch theorem on $X$ (without Noether's formula). Bibliography: 21 titles.
Keywords: central extensions, ring of adeles on an algebraic surface, locally free sheaves, Riemann-Roch theorem.
@article{SM_2022_213_5_a5,
     author = {D. V. Osipov},
     title = {Central extensions and the {Riemann-Roch} theorem on algebraic surfaces},
     journal = {Sbornik. Mathematics},
     pages = {671--693},
     publisher = {mathdoc},
     volume = {213},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Central extensions and the Riemann-Roch theorem on algebraic surfaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 671
EP  - 693
VL  - 213
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/
LA  - en
ID  - SM_2022_213_5_a5
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Central extensions and the Riemann-Roch theorem on algebraic surfaces
%J Sbornik. Mathematics
%D 2022
%P 671-693
%V 213
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/
%G en
%F SM_2022_213_5_a5
D. V. Osipov. Central extensions and the Riemann-Roch theorem on algebraic surfaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/