@article{SM_2022_213_5_a5,
author = {D. V. Osipov},
title = {Central extensions and the {Riemann-Roch} theorem on algebraic surfaces},
journal = {Sbornik. Mathematics},
pages = {671--693},
year = {2022},
volume = {213},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/}
}
D. V. Osipov. Central extensions and the Riemann-Roch theorem on algebraic surfaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/
[1] A. A. Beilinson, “Residues and adeles”, Funktsional. Anal. i Prilozhen., 14:1 (1980), 44–45 ; English transl. in Funct. Anal. Appl., 14:1 (1980), 34–35 | MR | Zbl | DOI
[2] A. A. Beilinson and V. V. Schechtman, “Determinant bundles and Virasoro algebras”, Comm. Math. Phys., 118:4 (1988), 651–701 | DOI | MR | Zbl
[3] J.-L. Brylinski and P. Deligne, “Central extensions of reductive groups by $\mathrm K_2$”, Publ. Math. Inst. Hautes Études Sci., 94 (2001), 5–85 | DOI | MR | Zbl
[4] B. L. Feigin and B. L. Tsygan, “Riemann-Roch theorem and Lie algebra cohomology. I”, Proceedings of the Winter school on geometry and physics (Srní 1988), Rend. Circ. Mat. Palermo (2) Suppl., 21, Circ. Mat. Palermo, Palermo, 1989, 15–52 | MR | Zbl
[5] A. Huber, “On the Parshin-Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl
[6] V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | DOI | MR | Zbl
[7] M. Kapranov, Semiinfinite symmetric powers, arXiv: math/0107089
[8] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | DOI | MR | Zbl
[9] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279 | DOI | MR | Zbl
[10] D. V. Osipov, “The unramified two-dimensional Langlands correspondence”, Izv. Ross. Akad. Nauk Ser. Mat., 77:4 (2013), 73–102 ; English transl. in Izv. Math., 77:4 (2013), 714–741 | DOI | MR | Zbl | DOI
[11] D. V. Osipov, “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718 | DOI | MR | Zbl
[12] D. V. Osipov and A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. I”, Izv. Ross. Akad. Nauk Ser. Mat., 72:5 (2008), 77–140 ; English transl. in Izv. Math., 72:5 (2008), 915–976 | DOI | MR | Zbl | DOI
[13] D. V. Osipov and A. N. Parshin, “Harmonic analysis and the Riemann-Roch theorem”, Dokl. Akad. Nauk, 441:4 (2011), 444–448 ; English transl. in Dokl. Math., 84:3 (2011), 826–829 | MR | Zbl | DOI
[14] A. N. Paršin (Parshin), “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976), 736–773 ; English transl. in Math. USSR-Izv., 10:4 (1976), 695–729 | MR | Zbl | DOI
[15] A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 1983:341 (1983), 174–192 | DOI | MR | Zbl
[16] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the international congress of mathematicians (Hyderabad 2010), v. 1, Hindustan Book Agency, New Delhi, 2010, 362–392 | MR | Zbl
[17] V. V. Schechtman, “Riemann-Roch theorem after D. Toledo and Y.-L. Tong”, Proceedings of the Winter School on Geometry and Physics, Srní, 1988, Rend. Circ. Mat. Palermo (2) Suppl., 21, Circ. Mat. Palermo, Palermo, 1989, 53–81 | MR | Zbl
[18] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl
[19] K. I. Tahara, “On the second cohomology groups of semidirect products”, Math. Z., 129 (1972), 365–379 | DOI | MR | Zbl
[20] J. Tate, “Residues of differentials on curves”, Ann. Sci. École Norm. Sup. (4), 1:1 (1968), 149–159 | DOI | MR | Zbl
[21] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Astérisque, 208, Soc. Math. France, Paris, 1992, 127 pp. | MR | Zbl