Central extensions and the Riemann-Roch theorem on algebraic surfaces
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study canonical central extensions of the general linear group over the ring of adeles on a smooth projective algebraic surface $X$ by means of the group of integers. Via these central extensions and the adelic transition matrices of a rank $n$ locally free sheaf of $\mathcal{O}_X$-modules we obtain a local (adelic) decomposition for the difference of Euler characteristics of this sheaf and the sheaf $\mathcal{O}_X^n$. Two distinct calculations of this difference lead to the Riemann-Roch theorem on $X$ (without Noether's formula). Bibliography: 21 titles.
Keywords: central extensions, ring of adeles on an algebraic surface, locally free sheaves, Riemann-Roch theorem.
@article{SM_2022_213_5_a5,
     author = {D. V. Osipov},
     title = {Central extensions and the {Riemann-Roch} theorem on algebraic surfaces},
     journal = {Sbornik. Mathematics},
     pages = {671--693},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Central extensions and the Riemann-Roch theorem on algebraic surfaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 671
EP  - 693
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/
LA  - en
ID  - SM_2022_213_5_a5
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Central extensions and the Riemann-Roch theorem on algebraic surfaces
%J Sbornik. Mathematics
%D 2022
%P 671-693
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/
%G en
%F SM_2022_213_5_a5
D. V. Osipov. Central extensions and the Riemann-Roch theorem on algebraic surfaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/

[1] A. A. Beilinson, “Residues and adeles”, Funktsional. Anal. i Prilozhen., 14:1 (1980), 44–45 ; English transl. in Funct. Anal. Appl., 14:1 (1980), 34–35 | MR | Zbl | DOI

[2] A. A. Beilinson and V. V. Schechtman, “Determinant bundles and Virasoro algebras”, Comm. Math. Phys., 118:4 (1988), 651–701 | DOI | MR | Zbl

[3] J.-L. Brylinski and P. Deligne, “Central extensions of reductive groups by $\mathrm K_2$”, Publ. Math. Inst. Hautes Études Sci., 94 (2001), 5–85 | DOI | MR | Zbl

[4] B. L. Feigin and B. L. Tsygan, “Riemann-Roch theorem and Lie algebra cohomology. I”, Proceedings of the Winter school on geometry and physics (Srní 1988), Rend. Circ. Mat. Palermo (2) Suppl., 21, Circ. Mat. Palermo, Palermo, 1989, 15–52 | MR | Zbl

[5] A. Huber, “On the Parshin-Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl

[6] V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | DOI | MR | Zbl

[7] M. Kapranov, Semiinfinite symmetric powers, arXiv: math/0107089

[8] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | DOI | MR | Zbl

[9] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279 | DOI | MR | Zbl

[10] D. V. Osipov, “The unramified two-dimensional Langlands correspondence”, Izv. Ross. Akad. Nauk Ser. Mat., 77:4 (2013), 73–102 ; English transl. in Izv. Math., 77:4 (2013), 714–741 | DOI | MR | Zbl | DOI

[11] D. V. Osipov, “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718 | DOI | MR | Zbl

[12] D. V. Osipov and A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. I”, Izv. Ross. Akad. Nauk Ser. Mat., 72:5 (2008), 77–140 ; English transl. in Izv. Math., 72:5 (2008), 915–976 | DOI | MR | Zbl | DOI

[13] D. V. Osipov and A. N. Parshin, “Harmonic analysis and the Riemann-Roch theorem”, Dokl. Akad. Nauk, 441:4 (2011), 444–448 ; English transl. in Dokl. Math., 84:3 (2011), 826–829 | MR | Zbl | DOI

[14] A. N. Paršin (Parshin), “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976), 736–773 ; English transl. in Math. USSR-Izv., 10:4 (1976), 695–729 | MR | Zbl | DOI

[15] A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 1983:341 (1983), 174–192 | DOI | MR | Zbl

[16] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the international congress of mathematicians (Hyderabad 2010), v. 1, Hindustan Book Agency, New Delhi, 2010, 362–392 | MR | Zbl

[17] V. V. Schechtman, “Riemann-Roch theorem after D. Toledo and Y.-L. Tong”, Proceedings of the Winter School on Geometry and Physics, Srní, 1988, Rend. Circ. Mat. Palermo (2) Suppl., 21, Circ. Mat. Palermo, Palermo, 1989, 53–81 | MR | Zbl

[18] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl

[19] K. I. Tahara, “On the second cohomology groups of semidirect products”, Math. Z., 129 (1972), 365–379 | DOI | MR | Zbl

[20] J. Tate, “Residues of differentials on curves”, Ann. Sci. École Norm. Sup. (4), 1:1 (1968), 149–159 | DOI | MR | Zbl

[21] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Astérisque, 208, Soc. Math. France, Paris, 1992, 127 pp. | MR | Zbl