Central extensions and the Riemann-Roch theorem on algebraic surfaces
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693
Voir la notice de l'article provenant de la source Math-Net.Ru
We study canonical central extensions of the general linear group over the ring of adeles on a smooth projective algebraic surface $X$ by means of the group of integers. Via these central extensions and the adelic transition matrices of a rank $n$ locally free sheaf of $\mathcal{O}_X$-modules we obtain a local (adelic) decomposition for the difference of Euler characteristics of this sheaf and the sheaf $\mathcal{O}_X^n$. Two distinct calculations of this difference lead to the Riemann-Roch theorem on $X$ (without Noether's formula).
Bibliography: 21 titles.
Keywords:
central extensions, ring of adeles on an algebraic surface, locally free sheaves, Riemann-Roch theorem.
@article{SM_2022_213_5_a5,
author = {D. V. Osipov},
title = {Central extensions and the {Riemann-Roch} theorem on algebraic surfaces},
journal = {Sbornik. Mathematics},
pages = {671--693},
publisher = {mathdoc},
volume = {213},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/}
}
D. V. Osipov. Central extensions and the Riemann-Roch theorem on algebraic surfaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 671-693. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a5/