On the universality of the zeta functions of certain cusp forms
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 659-670
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a certain Dirichlet series associated with the zeta function of a normalized Hecke cusp form. It is absolutely convergent on the right of the critical strip. We obtain universality theorems on the approximation of a wide class of analytic functions by shifts of this series. 
Bibliography: 9 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
zeta function of a cusp form, weak convergence, universality.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_5_a4,
     author = {A. Laurin\v{c}ikas},
     title = {On the universality of the zeta functions of certain cusp forms},
     journal = {Sbornik. Mathematics},
     pages = {659--670},
     publisher = {mathdoc},
     volume = {213},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/}
}
                      
                      
                    A. Laurinčikas. On the universality of the zeta functions of certain cusp forms. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 659-670. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/
