On the universality of the zeta functions of certain cusp forms
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 659-670

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a certain Dirichlet series associated with the zeta function of a normalized Hecke cusp form. It is absolutely convergent on the right of the critical strip. We obtain universality theorems on the approximation of a wide class of analytic functions by shifts of this series. Bibliography: 9 titles.
Keywords: zeta function of a cusp form, weak convergence, universality.
@article{SM_2022_213_5_a4,
     author = {A. Laurin\v{c}ikas},
     title = {On the universality of the zeta functions of certain cusp forms},
     journal = {Sbornik. Mathematics},
     pages = {659--670},
     publisher = {mathdoc},
     volume = {213},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On the universality of the zeta functions of certain cusp forms
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 659
EP  - 670
VL  - 213
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/
LA  - en
ID  - SM_2022_213_5_a4
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On the universality of the zeta functions of certain cusp forms
%J Sbornik. Mathematics
%D 2022
%P 659-670
%V 213
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/
%G en
%F SM_2022_213_5_a4
A. Laurinčikas. On the universality of the zeta functions of certain cusp forms. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 659-670. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/