On the universality of the zeta functions of certain cusp forms
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 659-670 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a certain Dirichlet series associated with the zeta function of a normalized Hecke cusp form. It is absolutely convergent on the right of the critical strip. We obtain universality theorems on the approximation of a wide class of analytic functions by shifts of this series. Bibliography: 9 titles.
Keywords: zeta function of a cusp form, weak convergence, universality.
@article{SM_2022_213_5_a4,
     author = {A. Laurin\v{c}ikas},
     title = {On the universality of the zeta functions of certain cusp forms},
     journal = {Sbornik. Mathematics},
     pages = {659--670},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On the universality of the zeta functions of certain cusp forms
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 659
EP  - 670
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/
LA  - en
ID  - SM_2022_213_5_a4
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On the universality of the zeta functions of certain cusp forms
%J Sbornik. Mathematics
%D 2022
%P 659-670
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/
%G en
%F SM_2022_213_5_a4
A. Laurinčikas. On the universality of the zeta functions of certain cusp forms. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 659-670. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a4/

[1] S. M. Voronin, “Theorem on the ‘universality’ of the Riemann zeta-function”, Izv. Akad. Nauk SSSR Ser. Mat., 39:3 (1975), 475–486 ; English transl. in Math. USSR-Izv., 9:3 (1975), 443–453 | MR | Zbl | DOI

[2] A. Laurinčikas and K. Matsumoto, “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98:4 (2001), 345–359 | DOI | MR | Zbl

[3] A. Laurinčikas, K. Matsumoto and J. Steuding, “Discrete universality of $L$-functions of new forms. II”, Lith. Math. J., 56:2 (2016), 207–218 | DOI | MR | Zbl

[4] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD thesis, Indian Stat. Inst., Calcutta, 1981, viii+172 pp.

[5] A. Kačėnas and A. Laurinčikas, “On Dirichlet series related to certain cusp forms”, Liet. Mat. Rink., 38:1 (1998), 113–124 ; English transl. in Lith. Math. J., 38:1 (1998), 64–76 | MR | Zbl | DOI

[6] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin–New York, 1971, ix+178 pp. | DOI | MR | Zbl

[7] M. Jutila, “On the approximate functional equation for $\zeta^2(s)$ and other Dirichlet series”, Quart. J. Math. Oxford Ser. (2), 37:2 (1986), 193–209 | DOI | MR | Zbl

[8] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | Zbl

[9] S. N. Mergelyan, Uniform approximations to functions of a complex variable, Uspekhi Mat. Nauk, 7, no. 2(48), 1952 ; English transl. in Amer. Math. Soc. Transl., 101, Amer. Math. Soc., Providence, RI, 1954, 99 pp. | MR | Zbl | MR | Zbl