Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 641-658 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The geometry of the Gromov-Hausdorff distance on the class of all metric spaces considered up to isometry is studied. The concept of a class in the sense of von Neumann-Bernays-Gödel set theory is used. As in the case of compact metric spaces, continuous curves and their lengths are defined, and the Gromov-Hausdorff distance is shown to be intrinsic on the entire class. As an application, metric segments (classes of points lying between two given points) are considered and their extendability beyond endpoints is examined. Bibliography: 13 titles.
Keywords: Gromov-Hausdorff distance, class of all metric spaces, geodesic, metric segment, extendability of a geodesic.
@article{SM_2022_213_5_a3,
     author = {S. I. Borzov and A. O. Ivanov and A. A. Tuzhilin},
     title = {Geometry of the {Gromov-Hausdorff} distance on the class of all metric spaces},
     journal = {Sbornik. Mathematics},
     pages = {641--658},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/}
}
TY  - JOUR
AU  - S. I. Borzov
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 641
EP  - 658
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/
LA  - en
ID  - SM_2022_213_5_a3
ER  - 
%0 Journal Article
%A S. I. Borzov
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
%J Sbornik. Mathematics
%D 2022
%P 641-658
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/
%G en
%F SM_2022_213_5_a3
S. I. Borzov; A. O. Ivanov; A. A. Tuzhilin. Geometry of the Gromov-Hausdorff distance on the class of all metric spaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 641-658. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/

[1] F. Hausdorff, Grundzüge der Mengenlehre, Veit Comp., Leipzig, 1914, viii+476 pp. | MR | Zbl

[2] D. A. Edwards, “The structure of superspace”, Studies in topology (Univ. North Carolina, Charlotte, NC 1974), Academic Press, New York, 1975, 121–133 | MR | Zbl

[3] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl

[4] A. O. Ivanov, N. K. Nikolaeva and A. A. Tuzhilin, “The Gromov-Hausdorff metric on the space of compact metric spaces is strictly intrinsic”, Mat. Zametki, 100:6 (2016), 947–950 ; English transl. in Math. Notes, 100:6 (2016), 883–885 ; arXiv: 1504.03830 | DOI | MR | Zbl | DOI

[5] A. O. Ivanov and A. A. Tuzhilin, “Isometry group of Gromov-Hausdorff space”, Mat. Vesnik, 71:1–2 (2019), 123–154 | MR | Zbl

[6] D. Burago, Yu. Burago and S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl

[7] A. O. Ivanov and A. A. Tuzhilin, Geometry of the Hausdorff and Gromov-Hausdorff distances: The case of compact spaces, Board of Trustees of the Faculty of Mechanics and Mathematics of Moscow State University, Moscow, 2017, 111 pp. (Russian)

[8] D. A. Herron, “Gromov-Hausdorff distance for pointed metric spaces”, J. Anal., 24:1 (2016), 1–38 | DOI | MR | Zbl

[9] D. S. Grigor'ev, A. O. Ivanov and A. A. Tuzhilin, Gromov-Hausdorff distance to simplexes, Chebyshevskii Sb., 20, no. 2, 2019 ; English transl., arXiv: 1906.09644 | MR | Zbl

[10] A. Ivanov, S. Iliadis and A. Tuzhilin, Realizations of Gromov-Hausdorff distance, arXiv: 1603.08850

[11] S. Chowdhury and F. Memoli, Constructing geodesics on the space of compact metric spaces, arXiv: 1603.02385v3

[12] O. Borisova, Metric segments in Gromov-Hausdorff class, arXiv: 2009.13273

[13] V. G. Boltjansky and I. Ts. Gohberg, Results and problems in combinatorial geometry, Nauka, Moscow, 1965, 108 pp. ; English transl., Cambridge Univ. Press, Cambridge, 1985, vii+108 pp. | MR | Zbl | DOI | MR | Zbl