@article{SM_2022_213_5_a3,
author = {S. I. Borzov and A. O. Ivanov and A. A. Tuzhilin},
title = {Geometry of the {Gromov-Hausdorff} distance on the class of all metric spaces},
journal = {Sbornik. Mathematics},
pages = {641--658},
year = {2022},
volume = {213},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/}
}
TY - JOUR AU - S. I. Borzov AU - A. O. Ivanov AU - A. A. Tuzhilin TI - Geometry of the Gromov-Hausdorff distance on the class of all metric spaces JO - Sbornik. Mathematics PY - 2022 SP - 641 EP - 658 VL - 213 IS - 5 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/ LA - en ID - SM_2022_213_5_a3 ER -
S. I. Borzov; A. O. Ivanov; A. A. Tuzhilin. Geometry of the Gromov-Hausdorff distance on the class of all metric spaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 641-658. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a3/
[1] F. Hausdorff, Grundzüge der Mengenlehre, Veit Comp., Leipzig, 1914, viii+476 pp. | MR | Zbl
[2] D. A. Edwards, “The structure of superspace”, Studies in topology (Univ. North Carolina, Charlotte, NC 1974), Academic Press, New York, 1975, 121–133 | MR | Zbl
[3] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl
[4] A. O. Ivanov, N. K. Nikolaeva and A. A. Tuzhilin, “The Gromov-Hausdorff metric on the space of compact metric spaces is strictly intrinsic”, Mat. Zametki, 100:6 (2016), 947–950 ; English transl. in Math. Notes, 100:6 (2016), 883–885 ; arXiv: 1504.03830 | DOI | MR | Zbl | DOI
[5] A. O. Ivanov and A. A. Tuzhilin, “Isometry group of Gromov-Hausdorff space”, Mat. Vesnik, 71:1–2 (2019), 123–154 | MR | Zbl
[6] D. Burago, Yu. Burago and S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl
[7] A. O. Ivanov and A. A. Tuzhilin, Geometry of the Hausdorff and Gromov-Hausdorff distances: The case of compact spaces, Board of Trustees of the Faculty of Mechanics and Mathematics of Moscow State University, Moscow, 2017, 111 pp. (Russian)
[8] D. A. Herron, “Gromov-Hausdorff distance for pointed metric spaces”, J. Anal., 24:1 (2016), 1–38 | DOI | MR | Zbl
[9] D. S. Grigor'ev, A. O. Ivanov and A. A. Tuzhilin, Gromov-Hausdorff distance to simplexes, Chebyshevskii Sb., 20, no. 2, 2019 ; English transl., arXiv: 1906.09644 | MR | Zbl
[10] A. Ivanov, S. Iliadis and A. Tuzhilin, Realizations of Gromov-Hausdorff distance, arXiv: 1603.08850
[11] S. Chowdhury and F. Memoli, Constructing geodesics on the space of compact metric spaces, arXiv: 1603.02385v3
[12] O. Borisova, Metric segments in Gromov-Hausdorff class, arXiv: 2009.13273
[13] V. G. Boltjansky and I. Ts. Gohberg, Results and problems in combinatorial geometry, Nauka, Moscow, 1965, 108 pp. ; English transl., Cambridge Univ. Press, Cambridge, 1985, vii+108 pp. | MR | Zbl | DOI | MR | Zbl