Asymptotic behaviour of the sphere and front of a~flat sub-Riemannian structure on the Martinet distribution
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 624-640
Voir la notice de l'article provenant de la source Math-Net.Ru
The sphere and front of a flat sub-Riemannian structure on the Martinet distribution are surfaces with nonisolated singularities in three-dimensional space. The sphere is a subset of the front; it is not subanalytic at two antipodal points (the poles). The asymptotic behaviour of the sub-Riemannian sphere and Martinet front are calculated at these points: each surface is approximated by a pair of quasihomogeneous surfaces with distinct sets of weights in a neighbourhood of a pole.
Bibliography: 13 titles.
Keywords:
sphere of a sub-Riemannian structure, front of a sub-Riemannian structure, exponential map, Jacobi elliptic functions.
Mots-clés : Martinet distribution
Mots-clés : Martinet distribution
@article{SM_2022_213_5_a2,
author = {I. A. Bogaevsky},
title = {Asymptotic behaviour of the sphere and front of a~flat {sub-Riemannian} structure on the {Martinet} distribution},
journal = {Sbornik. Mathematics},
pages = {624--640},
publisher = {mathdoc},
volume = {213},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/}
}
TY - JOUR AU - I. A. Bogaevsky TI - Asymptotic behaviour of the sphere and front of a~flat sub-Riemannian structure on the Martinet distribution JO - Sbornik. Mathematics PY - 2022 SP - 624 EP - 640 VL - 213 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/ LA - en ID - SM_2022_213_5_a2 ER -
I. A. Bogaevsky. Asymptotic behaviour of the sphere and front of a~flat sub-Riemannian structure on the Martinet distribution. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 624-640. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/