Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 624-640 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sphere and front of a flat sub-Riemannian structure on the Martinet distribution are surfaces with nonisolated singularities in three-dimensional space. The sphere is a subset of the front; it is not subanalytic at two antipodal points (the poles). The asymptotic behaviour of the sub-Riemannian sphere and Martinet front are calculated at these points: each surface is approximated by a pair of quasihomogeneous surfaces with distinct sets of weights in a neighbourhood of a pole. Bibliography: 13 titles.
Keywords: sphere of a sub-Riemannian structure, front of a sub-Riemannian structure, exponential map, Jacobi elliptic functions.
Mots-clés : Martinet distribution
@article{SM_2022_213_5_a2,
     author = {I. A. Bogaevsky},
     title = {Asymptotic behaviour of the sphere and front of a~flat {sub-Riemannian} structure on the {Martinet} distribution},
     journal = {Sbornik. Mathematics},
     pages = {624--640},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 624
EP  - 640
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/
LA  - en
ID  - SM_2022_213_5_a2
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution
%J Sbornik. Mathematics
%D 2022
%P 624-640
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/
%G en
%F SM_2022_213_5_a2
I. A. Bogaevsky. Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 624-640. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a2/

[1] A. Agrachev, B. Bonnard, M. Chyba and I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl

[2] M. Gromov, “Carnot-Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[3] A. A. Agrachev, “Topics in sub-Riemannian geometry”, Uspekhi Mat. Nauk, 71:6(432) (2016), 3–36 ; English transl. in Russian Math. Surveys, 71:6 (2016), 989–1019 | DOI | MR | Zbl | DOI

[4] B. Bonnard, M. Chyba and E. Trelat, “Sub-Riemannian geometry: one-parameter deformation of the Martinet flat case”, J. Dynam. Control Systems, 4:1 (1998), 59–76 | DOI | MR | Zbl

[5] E. Trélat, “Non-subanalyticity of sub-Riemannian Martinet spheres”, C. R. Acad. Sci. Paris Sér. I Math., 332:6 (2001), 527–532 | DOI | MR | Zbl

[6] B. Bonnard, G. Launay and E. Trélat, “The transcendence needed to compute the sphere and the wave front in Martinet SR-Geometry”, v. 3, Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obz., 64, Geometric control theory, VINITI, Moscow, 1999, 82–117 ; English transl. in J. Math. Sci. (N.Y.), 103:6 (2001), 686–708 | MR | Zbl | DOI

[7] A. A. Ardentov and Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Mat. Sb., 202:11 (2011), 31–54 ; English transl. in Sb. Math., 202:11 (2011), 1593–1615 | DOI | MR | Zbl | DOI

[8] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Mat. Sb., 194:9 (2003), 63–90 ; English transl. in Sb. Math., 194:9 (2003), 1331–1359 | DOI | MR | Zbl | DOI

[9] A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems VII, Sovr. Probl. Nat. Fund. Napravl., 16, VINITI, Moscow, 1987, 5–85 ; English transl. in Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR | Zbl | DOI | MR

[10] A. A. Agrachev, “Exponential mappings for contact sub-Riemannian structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358 | DOI | MR | Zbl

[11] I. Bogaevsky, “Fronts of control-affine systems in $\mathbb{R}^3$”, J. Singul., 21 (2020), 15–29 | DOI | MR | Zbl

[12] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 3, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955, xvii+292 pp. | MR | Zbl

[13] A. M. Zhuravskii, A handbook on elliptic functions, Publishing house of the USSR Academy of Sciences, Moscow–Leningrad, 1941, 235 pp. (Russian)